首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
综合类   1篇
污染及防治   8篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
A rapid spectrophotometric determination of persulfate anion in ISCO   总被引:10,自引:0,他引:10  
Due to a gradual increase in the use of persulfate as an in situ chemical oxidation (ISCO) oxidant, a simple measurement of persulfate concentration is desirable to analyze persulfate distribution at designated time intervals on/off a site. Such a distribution helps evaluate efficacy of ISCO treatment at a site. This work proposes a spectrophotometric determination of persulfate based on modification of the iodometric titration method. The analysis of absorption spectra of a yellow color solution resulting from the reaction of persulfate and iodide in the presence of sodium bicarbonate reveals an absorbance at 352 nm, without significant interferences from the reagent matrix. The calibration graph was linear in the range of persulfate solution concentration of 0-70 mM at 352 nm. The proposed method is validated by the iodometric titration method. The solution pH was at near neutral and the presence of iron activator does not interfere with the absorption measurement. Also, analysis of persulfate in a groundwater sample using the proposed method indicates a good agreement with measurements by the titration method. This proposed spectrophotometric quantification of persulfate provides a simple and rapid method for evaluation of ISCO effectiveness at a remediation site.  相似文献   
2.
In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.  相似文献   
3.
The ability of free ferrous ion activated persulfate (S2O82−) to generate sulfate radicals (SO4) for the oxidation of trichloroethylene (TCE) is limited by the scavenging of SO4 with excess Fe2+ and a quick conversion of Fe2+ to Fe3+. This study investigated the applicability of ethylene-diamine-tetra-acetic acid (EDTA) chelated Fe3+ in activating persulfate for the destruction of TCE in aqueous phase under pH 3, 7 and 10. Fe3+ and EDTA alone did not appreciably degrade persulfate. The presence of TCE in the EDTA/Fe3+ activated persulfate system can induce faster persulfate and EDTA degradation due to iron recycling to activate persulfate under a higher pH condition. Increasing the pH leads to increases in pseudo-first-order-rate constants for TCE, S2O82− and EDTA degradations, and Cl generation. Accordingly, the experiments at pH 10 with different EDTA/Fe3+ molar ratios indicated that a 1/1 ratio resulted in a remarkably higher degradation rate at the early stage of reaction as compared to results by other ratios. Higher persulfate dosage under the EDTA/Fe3+ molar ratio of 1/1 resulted in greater TCE degradation rates. However, increases in persulfate concentration may also lead to an increase in the rate of persulfate consumption.  相似文献   
4.
Feasibility study of ultraviolet activated persulfate oxidation of phenol   总被引:8,自引:0,他引:8  
Lin YT  Liang C  Chen JH 《Chemosphere》2011,82(8):1168-1172
  相似文献   
5.
Liang C  Bruell CJ  Marley MC  Sperry KL 《Chemosphere》2004,55(9):1225-1233
In situ chemical oxidation (ISCO) is a technique used to remediate contaminated soil and groundwater systems. It has been postulated that sodium persulfate (Na2S2O8) can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a redox potential of 2.6 V, which can potentially destroy organic contaminants. In this laboratory study persulfate oxidation of dissolved trichloroethylene (TCE) was investigated in aqueous and soil slurry systems under a variety of experimental conditions. A chelating agent (i.e., citric acid) was used in attempt to manipulate the quantity of ferrous ion in solution by providing an appropriate chelate/Fe2+ molar ratio. In an aqueous system a chelate/Fe2+ molar ratio of 1/5 (e.g., S2O8(2)-/chelate/Fe2+/TCE ratio of 20/2/10/1) was found to be the lowest acceptable ratio to maintain sufficient quantities of Fe2+ activator in solution resulting in nearly complete TCE destruction after only 20 min. The availability of Fe2+ appeared to be controlled by adjusting the molar ratio of chelate/Fe2+. In general, high levels of chelated ferrous ion concentrations resulted in faster TCE degradation and more persulfate decomposition. However, if initial ferrous ion contents are relatively low, sufficient quantities of chelate must be provided to ensure the chelation of a greater percentage of the limited ferrous ion present. Citric acid chelated ferrous ion appeared effective for TCE degradation within soil slurries but required longer reaction times. Additionally, the use of citric acid without the addition of supplemental Fe2+ in soil slurries, where the citric acid apparently extracted native metals from the soil, appeared to be somewhat effective at enhancing persulfate oxidation of TCE over extended reaction times. A comparison of different chelating agents revealed that citric acid was the most effective.  相似文献   
6.
Liang C  Lee IL  Hsu IY  Liang CP  Lin YL 《Chemosphere》2008,70(3):426-435
In situ chemical oxidation with persulfate anion (S2O82*) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). An accelerated reaction using S2O82* to destroy TCE can be achieved via chemical activation with ferrous ion to generate sulfate radicals (SO4*)(E degrees =2.6 V). The column study presented here simulates persulfate oxidation of TCE in porous media (glass beads and a sandy soil). Initial experiments were conducted to investigate persulfate transport in the absence of TCE in the column. The persulfate flushing exhibited a longer residence time and revealed a moderate persulfate interaction with soils. In TCE treatment experiments, the results indicate that the water or persulfate solution would push dissolved TCE from the column. Therefore, the effluent TCE concentration gradually increased to a maximum when about one pore volume was replaced with the flushing solution in the column. The presence of Fe2+ concentration within the column caused a quick drop in effluent TCE concentration and more TCE degradation was observed. When a TCE solution was flushing through the soil column, breakthrough of TCE concentration in the effluent was relatively slow. In contrast, when the soil column was flushed with a mixed solution of persulfate and TCE, persulfate appeared to preferentially oxidize soil oxidizable matter rather than TCE during transport. Hence, persulfate oxidation of soil organics may possibly reduce the interaction between TCE and soil (e.g., adsorption) and facilitate the transport of TCE through soil columns resulting in faster breakthrough.  相似文献   
7.
1基本情况 二龙山风景区位于我省宾县境内,距哈尔滨市东56公里处,一湖碧水,周围环境,是县级自然保护区.它以二龙山水库为核心,水面面积1.5万亩,林地面积2.25万亩,以山、水、林构成了保护区的主体.二龙山水库始建于1958年,基本竣工于1972年,大坝长800米,总库容9400万立方米,枯水期库容4000万立方米,控制流域面积275平方公里,灌溉下游稻田4万亩,集蓄水、防洪、灌溉、养鱼、供水和旅游等功能于一体,而且是宾县县城人民唯一的基本饮用水源地.2000年二龙山风景区被评为国家四A级旅游区,是黑龙江省的主要旅游景点之一,也是宾县发展县城经济的资源组成部分.  相似文献   
8.
Liang C  Bruell CJ  Marley MC  Sperry KL 《Chemosphere》2004,55(9):1213-1223
The objective of the laboratory study is to examine the conditions under which transition metal ions (e.g., ferrous ion, Fe2+) could activate the persulfate anion (S2O8(2)-) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a standard redox potential of 2.6 V. The SO4-* is capable of destroying groundwater contaminants in situ such as trichloroethylene (TCE). Experiments using Fe2+ as an activator under various molar ratios of S2O8(2)-/Fe2+/TCE in an aqueous system indicated that partial TCE degradation occurred almost instantaneously and then the reaction stalled. Either destruction of SO4-* in the presence of excess Fe2+ or the rapid conversion of all Fe2+ to Fe3+ limited the ultimate oxidizing capability of the system. Sequential addition of Fe2+ in small increments resulted in an increased TCE removal efficiency. Therefore, it appeared that Fe2+ played an important role in generating SO4-*. An observation of oxidation-reduction potential (ORP) variations revealed that the addition of sodium thiosulfate (Na2S2O3) to the ferrous ion activated persulfate system could significantly decrease the strong oxidizing conditions. It was hypothesized that the thiosulfate induced reducing conditions might convert Fe3+ to a lower valence state of Fe2+, making the Fe2+ available to activate persulfate decomposition. The sequential addition of thiosulfate (S2O3(2)-), after the initial stalling of ferrous ion activated persulfate oxidation of TCE, resulted in an improvement in TCE removal. The ferrous ion activated persulfate-thiosulfate redox couple resulted in fairly complete TCE degradation in aqueous systems in a short time frame. In soil slurry systems, TCE degradation was slower in comparison to aqueous systems.  相似文献   
9.
Influence of pH on persulfate oxidation of TCE at ambient temperatures   总被引:10,自引:0,他引:10  
Liang C  Wang ZS  Bruell CJ 《Chemosphere》2007,66(1):106-113
In situ chemical oxidation (ISCO) is a technology used for groundwater remediation. This laboratory study investigated the use of the oxidant sodium persulfate for the chemical oxidation of trichloroethylene (TCE) at near ambient temperatures (10, 20 and 30 degrees C) to determine the influence of pH (pH=4, 7 and 9) on the reaction rate (i.e., pseudo-first-order rate constants) over the range of temperatures utilized. TCE solutions (60 mg l(-1); 0.46 mM) were prepared in phosphate buffered RO water and a fixed persulfate/TCE molar ratio of 50/1 was employed in all tests. Half-lives of TCE degradation at 10, 20 and 30 degrees C (pH 7) were 115.5, 35.0 and 5.5h, respectively. Maximum TCE degradation occurred at pH 7. Lowering system pH resulted in a greater decrease in TCE degradation rates than increasing system pH. Radical scavenging tests used to identify predominant radical species suggested that the sulfate radical (SO(4)(.-)) predominates under acidic conditions and the hydroxyl radical (.OH) predominates under basic conditions. In a side by side comparison of TCE degradation in a groundwater vs. unbuffered RO water it was demonstrated that when the system pH is buffered to near neutral pH conditions due to the presence of natural occurring groundwater constituents that the TCE degradation rate is higher than in unbuffered RO water where the system pH dropped from 5.9 to 2.8. The results of this study suggest that in a field application of ISCO, pH should be monitored and adjusted to near neutral if necessary.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号