首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
安全科学   1篇
废物处理   1篇
综合类   2篇
基础理论   5篇
污染及防治   6篇
评价与监测   1篇
社会与环境   3篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  1977年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
A research program was undertaken to develop information that could be used to estimate the risk of adverse effects of saline cooling tower drift on native and cultivated flora in the Indian Point, New York area. Eleven species of woody plants were exposed at 85 % relative humidity to a saline mist with 95% of the particles between 50 and 150 nm in diameter. Three biological factors—stage of development, species, and phenotype—determined the susceptibility of plants to saline aerosols when the occurrence of any lesion on the foliage was used as a measure of response. The effects of stage of development on the incidence and severity of foliar lesions depended upon the kind of plant. In deciduous woody species, the youngest leaves were most susceptible, but in conifers, the year-old needles were most susceptible. Canadian hemlock was the most susceptible species and witch hazel was the least susceptible. Median effective doses for these two species, although undetermined, could be more than 100-fold different (less than 2.4, the lowest used, and greater than 264 ng CI cm-2, respectively). Other species, ranked in decreasing order of susceptibility were: white ash, white flowering dogwood, forsythia, chestnut oak, silk tree, black locust, red maple, eastern white pine, and golden rain free. Phenofypic variation within a species was not so great—within a 10 to 20-fold increase in dose the incidence of injury went from 0 to 100%. Exposures with bush bean showed that the relative humidity (RH) during or after the exposure period affected the incidence of saline induced foliar injury. A change from 50 to 85% RH doubled the effectiveness of the saline mist. It was also found that compared to particles between 50 and 150 jum in diameter, an increase in the fraction of particles above 150 /xm increased the toxicity of the mist.  相似文献   
3.
In the present work we have developed an analytical methodology for the determination of nonylphenol (NP) and nonylphenol mono- and di-ethoxylates (NP1EO and NP2EO) in water samples. The applicability of this methodology was proved by means of the analysis of environmentally relevant aqueous samples from Buenos Aires. This constitutes a starting point for a rigorous assessment of the incidence of NPnEO surfactants in Argentina, as only very few, qualitative or semi-quantitative data on the occurrence of these compounds in local systems were available up to this time. Enrichment of the analytes was carried out by solid-phase extraction on a C-18 sorbent, followed by elution with ethyl acetate. Normal-phase high performance liquid chromatography on an amino-silica column and fluorescence detection at excitation-emission wavelengths of 230-300 nm were employed for separation and quantification of the analytes. Confirmation of peak assignment in selected real samples was performed by off-line coupling HPLC with GC-MS analysis. A non-polar GC capillary column was used, and a characteristic peak pattern was obtained for the alkyl chain isomers of each ethoxylated homologue and NP. GC-MS analyses yielded in all cases purity levels higher than 80% for the HPLC collected fractions. The elevated concentrations found for the estrogenic metabolites of NPnEO are in accordance with an unrestricted use of this class of non-ionic surfactants in the country.  相似文献   
4.
The successful operation of any type of hydrogen-producing bioreactor depends on the performance of the microorganisms present in the system. Both substrate and partial gas pressures are crucial factors affecting dark fermentation metabolic pathways. The main objective of this study was to evaluate the impact of both factors on hydrogen production using anaerobic granular sludge as inoculum and, secondly, to study the metabolic shifts of an anaerobic community subjected to low partial gas pressures. With this goal in mind, seven different wastewater (four synthetic media, two industrial wastewater, and one domestic effluent) and the effect of applying vacuum on the systems were analyzed. The application of vacuum promoted an increase in the diversity of hydrogenproducing bacteria, such as Clostridium, and promoted the dominance of acetoclastic- over hydrogenotrophic methanogens. The application of different media promoted a wide variety of metabolic pathways. Nevertheless, reduction of the hydrogen partial pressure by application of vacuum lead to further oxidation of reaction intermediates irrespective of the medium used, which resulted in higher hydrogen and methane production, and improved the COD removal. Interestingly, vacuum greatly promoted biogenic hydrogen production from a real wastewater, which opens possibilities for future application of dark fermentation systems to enhance biohydrogen yields.  相似文献   
5.
6.
An integrated approach combining classic and molecular microbiological methods, “in vitro” bioremediation assays and groundwater numerical modeling, has been established to identify optimized solutions for remediating aquifers contaminated with organic pollutants. Bacteria have been isolated from an aquifer contaminated with toluene and methyl tert‐butyl ether (MTBE), selected for their growth with contaminants as a sole carbon source and identified through 16S rDNA partial sequencing. Successive biodegradation laboratory tests have been performed to determine which chemical conditions were more appropriate for the isolated bacteria to more efficiently oxidize toluene and MTBE. A groundwater model was created using FEFLOW code first to determine the movement of the plume front and second to simulate the impact of the biodegradation processes along the groundwater flow directions based on the bioremediation rates obtained in the laboratory. The results show that this innovative and interdisciplinary model can be used to assist in developing monitoring and remediation plans for cleaning up complex contaminated groundwater sites. This approach successfully combines the identification of the optimum biogeochemical conditions for bacterial biodegradation to occur with the predictability of the development of the process over time, ensuring decisive support in the management of contaminated sites. ©2016 Wiley Periodicals, Inc.  相似文献   
7.
Marine rock-pools, commonly found along the Mediterranean coasts, are isolated patches of habitat characterised by large spatial and temporal variations. The phylogeography of Calobius quadricollis and C. urbanelliae, two sibling species of moss beetles (Coleoptera, Hydraenidae) inhabiting Italian temporary marine rock-pool ecosystems, were studied using mitochondrial cytochrome c oxidase subunit I (COI). Our data suggest a strong association between the scored genetic variability and the geographical distribution of populations sampled for both species. These analyses provided evidences of episodic species range expansion and fragmentation, recurrent “flush and crash” and bottleneck episodes probably occurring during the Glacial Cycles. The observed phylogeographical pattern is probably related to the historical and biogeographical processes of Mediterranean areas, as well as both to the ephemeral habitat tipology and limited dispersal ability of these beetles.  相似文献   
8.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   
9.
Two ill-explored hypotheses might explain host castration by parasitic pea crabs. The ‘energy drain’ hypothesis states that castration is caused by host-derived nutrient consumption of parasites that ultimately diminishes host-energy intake. The ‘steric interference’ hypothesis states that castration occurs when parasites physically inhibit host reproduction. This study evaluated whether Calyptraeotheres garthi, a pea crab from the southwestern Atlantic, is a parasitic castrator and explored whether the two hypotheses above explain castration in the limpet Crepidula cachimilla. None of three studied limpet species brooded embryos during the reproductive season when infested by mature female pea crabs. Also, limpets of C. cachimilla infested by C. garthi did not reproduce during a 90-day experimental period while crab-free limpets did spawn embryos during this period. Limpets resumed reproduction soon after pea crabs were experimentally removed from their brooding chamber. Thus, C. garthi does castrate limpets, and castration is reversible. Pea crabs ‘steal’ food from limpets, and infested limpets did not modify their feeding behavior to counteract nutrient loss. Thus, infested limpets are expected to ingest less food which provides partial support for the ‘energy drain’ hypothesis. However, the limpet’s body condition increased or was not affected by pea crabs during the breeding season which argues against the same hypothesis. Furthermore, that limpets promptly recovered reproductive activity once pea crabs were experimentally removed, that castration was not induced by the smallest pea crabs in the population (that fill only partially the brooding chamber), and that parasitized limpets did exhibit fully mature ovaries, support the ‘steric interference’ hypothesis explaining parasitic castration.  相似文献   
10.
Venezuela is well known for its century-old oil economy, which has significantly shaped its social fabrics, territories, and eco-systems. Since 1999, the Bolivarian Revolution has led to important transformations in the context of the ‘Socialism of the 21st century’ project, but the extractivist model has deepened. This situation has created or intensified several ecological distribution conflicts, which have been further exacerbated by an extraordinary national crisis unleashed in the period 2013–2016. In this paper, a geography of the 20 most emblematic and representative socio-environmental conflicts in the period of the Bolivarian Revolution is presented. From a comparative political ecology perspective, this article aims to understand how power relations are expressed through territorial configurations and spatial dynamics of resistance, and what are the implications for sustainability. It is argued that a remarkable new situation of environmental injustice is occurring in this period. Despite the ‘eco-socialist’ discourse raised, the current Petro-State has updated the traditional regime on eco-systems, territories, and human bodies primarily by resorting to the assimilation of socio-environmental conflicts through a strategic distribution policy of oil rents. However, it has maintained a pattern of ecological degradation and social marginalization as an outcome of its economic development model. The current context of crisis has fostered intense territorial disputes and conditions for the emergence of new social actors, practices, scenarios, and geographies linked to underground economies and criminal bands, which complicate an already concerning scenario of unsustainability. The current extractivist model is reaching a breaking point. New commodity frontiers have become a main area of dispute.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号