首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   4篇
基础理论   1篇
污染及防治   1篇
  2022年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
How fully a suitable habitat patch is utilized by organisms depends crucially on patch size and isolation. Testing this interplay is made difficult in many systems by the arbitrariness of defining a "habitat patch", measuring its boarders, and relatively low detection probability of the inhabitants. Spider webs as habitat patches for obligate web kleptoparasites are free from these problems. Each individual web is a highly discrete and readily measured habitat patch, and the detection probability of argyrodine spider kleptoparasites is very nearly 1. Hence, spider webs emerge as simple systems for ecological models such as patch occupancy and metapopulation biology. Recently, I showed that the distribution of kleptoparasites among host webs relates both to web (patch) size as well as patch connectivity. Here, I test the relative importance of patch size versus isolation in explaining patch occupancy and abundance of inhabitants. I find that (1) web size is the better predictor of patch occupancy and abundance. (2) Web size is overall positively correlated with abundance, but predicts it most precisely among interconnected webs and not at all among the most isolated webs. Hence, patch occupancy and inhabitant abundance is explained by a rather complex interplay between patch size and isolation.  相似文献   
2.
Latitude, rainfall, and productivity have been shown to influence social organisation and level of sociality in arthropods on large geographic scales. Social spiders form permanent group-living societies where they cooperate in brood care, web maintenance, and foraging. Sociality has evolved independently in a number of unrelated spider genera and may reflect convergent evolutionary responses to common environmental drivers. The genus Anelosimus contains a third of approximately 25 described permanently social spider species, eight to nine species that all occur in the Americas. To test for environmental correlates of sociality in Anelosimus across the Americas, we used logistic regression to detect effects of annual rainfall, productivity, and precipitation seasonality on the relative likelihood of occurrence of social and non-social Anelosimus spiders. Our analyses show that social species tend to occur at higher annual rainfall and productivity than non-social species, supporting the hypothesised effects of these environmental variables on the geographical distribution of social species. We did not find support for the hypothesis that permanently social species occur in areas with low precipitation seasonality. High annual precipitation and, to less extent, high productivity favour the occurrence of permanently group-living Anelosimus spiders relative to subsocial and solitary species. These results are partially consistent with previous findings for the Old World spider genus Stegodyphus, where a link between high habitat productivity and sociality was also found. Unlike Anelosimus, however, Stegodyphus typically occur in dry habitats negating a general importance of high precipitation for sociality. Sociality in spiders thus seems to be strongly linked to productivity, probably reflecting the need for relatively high availability of large prey to sustain social colonies.  相似文献   
3.
The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.  相似文献   
4.
Animals in the intertidal, both mobile and sessile, generally exhibit some zonation pattern, in which each species shows a preference for, or is confined to, some height levels. The study of zonation patterns is, however, almost exclusively based on surveys made during low tide, when many animals are relatively inactive. We studied zonation patterns of amphipods and isopods on rocky shores in southwestern Iceland, both by traditional sampling at low tide as well as by sampling during high tide. The distributional patterns seen at high tide differed significantly from that at low tide. One amphipod, Anonyx sarsi, was common around baits at all levels at high tide but absent from the intertidal at low tide. Several other species were either relatively more common or tended to be recorded higher, or in one instance, lower on the shore when the tide was in than at low tide. There was also evidence of some species changing habitats within the intertidal with the tidal cycle. Many species, however, moved little away from their respective zones occupied at low tide, and for some species, including some capable of rapid swimming, very limited mobility was indicated. We conclude that low-tide surveys of the intertidal give an incomplete picture of the community structure, and even key species may be missed in such surveys.Communicated by L. Hagermann, Helsingør  相似文献   
5.
Cooperation and group living often evolves through kin selection. However, associations between unrelated organisms, such as different species, can evolve if both parties benefit from the interaction. Group living is rare in spiders, but occurs in cooperative, permanently social spiders, as well as in territorial, colonial spiders. Mixed species spider colonies, involving closely related species, have rarely been documented. We examined social interactions in newly discovered mixed-species colonies of theridiid spiders on Bali, Indonesia. Our aim was to test the degree of intra- and interspecific tolerance, aggression and cooperation through behavioural experiments and examine the potential for adoption of foreign brood. Morphological and genetic analyses confirmed that colonies consisted of two related species Chikunia nigra (O.P. Cambridge, 1880) new combination (previously Chrysso nigra) and a yet undescribed Chikunia sp. Females defended territories and did not engage in cooperative prey capture, but interestingly, both species seemed to provide extended maternal care of young and indiscriminate care for foreign brood. Future studies may reveal whether these species adopt only intra-specific young, or also inter-specifically. We classify both Chikunia species subsocial and intra- and interspecifically colonial, and discuss the evolutionary significance of a system where one or both species may potentially benefit from mutual tolerance and brood adoption.  相似文献   
6.
Environmental Science and Pollution Research - Coliform mastitis is a worldwide serious disease of the mammary gland. Curcumin is a pleiotropic polyphenol obtained from turmeric, but it is...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号