首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   3篇
污染及防治   4篇
评价与监测   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
The potential threat of emerging chemicals to the aquatic flora is a major issue. The purpose of the study was to develop a multispecies microalgae test in order to determine the impact of species interactions on the cytoxicity of an emergent toxic contaminant: the tetrabromobisphenol A (TBBPA). Single and multi-species tests were thus performed to study the effects of this flame retardant on two microalgae (Pseudokirchneriella subcapitata and Nitzschia palea) commonly observed in freshwater. A synthetic medium was designed to allow the growth of both species. The algae were exposed to 1.8, 4.8, 9.2, 12.9 and 16.5 μM of TBBPA for 72 h. After staining with fluorescein diacetate (FDA), viable cells of each alga species were analyzed by flow cytometry based on chlorophyll autofluorescence and intracellular esterase activity. Density and abundance of viable cells were assessed to follow the population growth and the cell viability. In TBBPA treated samples, the growth of the two microalgae was significantly inhibited at the three highest concentrations (9.2, 12.9 and 16.5 μM) in the two tests. At the end of the experiment (t = 72 h), the cell viability was also significantly smaller at these concentrations. The decreases of growth rate and viable cell abundance in TBBPA treated populations of N. palea were significantly higher in multi-species test in comparison with the single-species test. No significant differences were noticed between the two tests for P. subcapitata populations exposed to TBBPA.  相似文献   
4.
This study analyzes the significant impacts of typhoons and earthquakes on land cover change and hydrological response. The occurrence of landslides following typhoons and earthquakes is a major indicator of natural disturbance. The hydrological response of the Chenyulan watershed to land use change was assessed from 1996 to 2005. Land use changes revealed by seven remote images corresponded to typhoons and a catastrophic earthquake in central Taiwan. Hydrological response is discussed as the change in quantities and statistical distributions of hydrological components. The land cover change results indicate that the proportion of landslide relative to total area increased to 6.1% after the Chi-Chi earthquake, representing the largest increase during the study period. The study watershed is dominated by forest land cover. Comparisons of hydrological components reveal that the disturbance significantly affects base flow and direct runoff. The hydrological modeling results demonstrate that the change in forest area correlates with the variation of base flow and direct runoff. Base flow and direct runoff are sensitive to land use in discussions of distinction. The proposed approach quantifies the effect of typhoons and earthquakes on land cover changes.  相似文献   
5.
The occurrence of triclosan (TCS), a general purpose antibacterial agent contained in numerous consumer and personal-care products, in the aquatic environment is well known. To a lesser degree, the formation of chlorinated and brominated derivatives of TCS during the chlorination of the antibacterial has also been reported. Presumably due to the lack of authentic standards, very few reports have been published on the levels of these halogenated TCSs in the environment. For this purpose, we have synthesized six selected halogenated derivatives of TCS, namely, 3-Cl-, 5-Cl-, 3,5-Cl2-, 3-Br-, 5-Br-, and 3,5-Br2- TCSs, with supporting 1H-NMR (nuclear magnetic resonance) and GC–MS (gas chromatography–mass spectrometry) data for their structural assignments. Using these model compounds together with sensitive analytical methods, we were able to identify and quantify the above compounds together with their precursor compound TCS in Canadian municipal wastewater and biosolid samples for the first time. While detected in all influent (range from 1.4 to 24.1 ng L?1) and biosolid (range from 7.7 to 274 ng g?1) samples, the concentrations of these chlorinated TCS were generally from 100- to 1,000-fold lower than TCS in the same sample. Even lower levels (<20 ng/g in 85 % of the results) of brominated TCS were found in biosolids, and they were mostly undetected in sewage.  相似文献   
6.
Mesitylene (or 1,3,5-trimethylbenzene) is a volatile organic compound emitted from various industrial processes, e.g., spray coating. Its emissions have become a critical issue because mesitylene is toxic and cannot be removed using traditional adsorbents, e.g., zeolite (H-ZSM-5; the diameter of mesitylene molecules is greater than the pore size of H-ZSM-5). Hence, an adsorbent with a large pore size, MCM-41, is used in this study to investigate its adsorption capacity for mesitylene and compare with that of H-ZSM-5. Experimental results reveal that MCM-41 without Al2O3 exhibits a good adsorption capacity (184 mg/g) for the gas stream containing 100 ppm of mesitylene at a relative humidity of 10%. The adsorption kinetics is well described by the Freundlich isotherm. Furthermore, experimental results reveal that MCM-41 is effective for the adsorption of low concentrations (10 ppm) of mesitylene. In addition, adsorption–desorption tests revealed that the sample MCM-41-AS is stable to sustain the adsorption capacity after 10 adsorption–desorption cycles. After 10 adsorption–desorption cycles, MCM-41-AS retains 92.4% of its initial adsorption capacity (170 vs. 184 mg/g). Finally, MCM-41 and H-ZSM-5 in series are effective for the simultaneous removal of mesitylene and toluene in the gas stream.

Implications: This study aims to improve the performance of adsorbent for mesitylene, which is typically applied in the spray-coating industry. The zeolite MCM-41-AS is selected as a candidate for the investigation. Experimental results reveal that MCM-41-AS exhibits a good adsorption capacity for mesitylene and that it can be integrated with H-ZSM-5-25 for the simultaneous adsorption of mesitylene and toluene.  相似文献   

7.
Activated carbon (AC) is seldom applied for recovering ketone-based volatile organic compounds because of safety concerns. Adsorption of methyl ethyl ketone (MEK) with AC is a highly exothermic reaction that potentially causes fires in AC beds. Moreover, 2,3-butanediol (BDO) is produced in the desorbed solvent, causing yellowing and odor of the recovered solvent. This study applied a continuous adsorption–desorption apparatus for evaluating the operating capacities and BDO concentration in recovered MEK containing modified and original ACs. AC-1 (TAKETA- G2X) was used as the target for modification. The experimental results indicate that using MgO as the modifier increases the ignition point by 12°C and that applying KNO3 as the modifier reduces the AC ignition point by 28°C (compared with AC-1). The BDO concentration of the desorbed MEK solvent can be reduced by increasing the loading of the modifying agent (Ethanolamine) (Im-1: 3.1 wt%; Im-5: 6.2 wt%). Moreover, applying the AC pretreated with nitrogen (Im-6) as adsorbent significantly reduces the BDO concentration (from 0.123 wt% to 0.073 wt%). Because desorption and purging procedures were performed in N2 atmospheres, the BDO concentrations of the desorbed MEK solvents were relatively low and ranged from 0.032 wt% to 0.043 wt%. When the MEK concentration was reduced to 2000 ppm, lower BDO concentrations (0.012–0.022 wt%) were measured in the recovered MEK solvent. The way to modify activated carbon and a better desorbing sequence to effectively inhibit the oxidation of MEK to BDO are developed. The results obtained indicate that the BDO concentration in the desorbed solvent was lower than the original MEK solvent (0.023 wt%). Different approaches can be applied simultaneously to achieve high inhibition effects; however, carbon adsorption performance may be negatively affected.

Implications:?The study is motivated to improve the quality of recovered solvent and reduce fire hazards, particularly when AC is applied for adsorbing a ketone-based solvent (e.g., MEK). The experimental results indicate that the BDO concentration in the recovered solvent can be reduced and the ignition point of AC can be increased by modifying the AC with an appropriate agent.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号