首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   25篇
  国内免费   66篇
安全科学   25篇
废物处理   2篇
环保管理   24篇
综合类   171篇
基础理论   9篇
污染及防治   1篇
评价与监测   6篇
社会与环境   17篇
灾害及防治   2篇
  2024年   2篇
  2023年   5篇
  2022年   11篇
  2021年   12篇
  2020年   15篇
  2019年   11篇
  2018年   20篇
  2017年   13篇
  2016年   12篇
  2015年   14篇
  2014年   13篇
  2013年   14篇
  2012年   20篇
  2011年   19篇
  2010年   21篇
  2009年   12篇
  2008年   11篇
  2007年   14篇
  2006年   5篇
  2005年   7篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  1995年   1篇
排序方式: 共有257条查询结果,搜索用时 31 毫秒
1.
以城镇污水处理厂A2/O工艺的回流污泥作为接种污泥,在序批式反应器(SBR)中培养好氧颗粒污泥(AGS),探究Ni2+对AGS系统的影响.结果表明:在25℃的条件下,50d左右培养出成熟的AGS,其形态多呈球状或椭球状,外表分布着少量丝状菌,颗粒污泥粒径主要在2~4mm,MLSS达6000mg/L,SVI维持在40~50mL/g.将Ni2+作用于培养出的成熟AGS,Ni2+在0~2mg/L的浓度范围内会提高AGS的稳定性,使MLSS上升,SVI降低;同时会促进AGS分泌胞外多聚物(EPS),EPS组成成分中的蛋白质(PN)明显多于多糖(PS);Ni2+对好氧颗粒污泥去除总氮(TN)的抑制程度要大于COD,最终COD去除率可维持在95%以上,TN去除率可维持在70%以上.  相似文献   
2.
针对我国锑水生生物水质基准缺乏的问题,收集筛选了锑对淡水水生生物的急性和慢性毒性数据,使用评价因子法、毒性百分数排序法和物种敏感度分布法分别推导我国锑的淡水水质基准,通过综合分析和比较,选择物种敏感度分布法推导的急性和慢性的水质基准值(466.62μg/L和88.71μg/L)作为最终的基准推荐值.通过与国内外现有锑相关水质标准进行比较,提出在我国相关水质标准修订中分别制定保护水生生物和人体健康水质标准的建议,避免水质标准对水生生物的"过保护"问题.  相似文献   
3.
阚灵佳  万红友  武燕杰 《环境科技》2007,20(Z2):136-139
太湖流域是我国经济最发达的地区之一,又是我国著名的旅游胜地,随着社会和经济的发展,太湖流域的GDP总值在全国占有重要的地位,但是,由于众多人为因素的影响,已导致太湖生态环境急剧恶化,特别是水体污染与富营养化情况日趋严重,分别从点源污染和非点源污染2个方面分析了太湖富营养化的成因,并针对这2个方面从外源控制的角度提出了相应的控制对策及治理的办法,阐述了控制及治理等方面现有的不足,并对此提出了一系列可行性建议与展望.  相似文献   
4.
介绍SBR法在制药废水中的应用及工艺流程.通过处理COD从3600mg/l降到130mg/l.COD总去除率达到96%,出水可以达标排放.  相似文献   
5.
清洁生产是一种全新的发展战略,是环境保护战略具有重大意义的创新,是工业发展的必然选择,对制药企业清洁生产由为重要.随着企业不断的发展,生产规模不断的扩大,污水处理厂的能力接近饱和,已没有扩展的空间,这时,清洁生产由为重要,势在必行.  相似文献   
6.
郑雯婧  林建伟  詹艳慧  王虹 《环境科学》2015,36(6):2185-2194
采用锆(Zr)和阳离子表面活性剂十六烷基三甲基氯化铵(CTAC)对活性炭进行联合改性,考察了所制备的Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐的吸附去除作用,并探讨了相关的吸附去除机制.结果表明,Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐均具备较好的吸附去除能力.Zr-CTAC改性活性炭对硝酸盐和磷酸盐吸附动力学过程满足准二级动力学模型.Langmuir、Freundlich和Dubinin-Radushkevich(D-R)等温吸附模型可以较好地描述Zr-CTAC改性活性炭对水中硝酸盐的等温吸附过程,Langmuir和D-R等温吸附模型可以较好地描述Zr-CTAC改性活性炭对水中磷酸盐等温吸附过程,通过Langmuir模型计算得到吸附剂对硝酸盐和磷酸盐的最大单位吸附量分别为7.58 mg·g-1和10.9 mg·g-1.高的p H会抑制Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐的吸附.水中共存的Cl-、HCO-3和SO2-4等阴离子均会抑制Zr-CTAC改性活性炭对硝酸盐和磷酸盐的吸附,且对吸附硝酸盐的抑制作用较强而对吸附磷酸盐的抑制作用较弱.水中共存的磷酸盐对Zr-CTAC改性活性炭吸附硝酸盐的抑制作用较强,而水中共存的硝酸盐对Zr-CTAC改性活性炭吸附磷酸盐的抑制作用较弱.1 mol·L-1Na Cl溶液可以使90%左右被吸附到Zr-CTAC改性活性炭表面上的硝酸盐解吸下来.1 mol·L-1的Na OH溶液可以使78%左右被吸附到Zr-CTAC改性活性炭表面上的磷酸盐解吸下来.Zr-CTAC改性活性炭对硝酸盐的吸附机制主要包括阴离子交换作用和静电吸引作用,对磷酸盐的吸附机制主要包括配位体交换作用、阴离子交换作用和静电吸引作用.上述结果说明Zr-CTAC改性活性炭适合作为一种吸附剂去除废水中的硝酸盐和磷酸盐.  相似文献   
7.
本文应用GC/MS、GC/IRMS和EA/IRMS等方法对6种不同产地原油的特征比值, 全油和正构烷烃组分的碳稳定同位素组成进行分析, 研究不同产地原油的碳稳定同位素组成特征, 并探讨其原因。结果显示, 6种原油的C19+C20/(C19~C22)、OEP1和CPI13-22特征比值不存在显著性差异, 不能作为区分这6种原油的有效指标。原油全样的δ13C值差异明显, 阿曼δ13C值最轻为-33.4‰, 巴西最重为-24.5‰, 其余4种原油介于两者之间。GC/IRMS分析结果显示不同油种具有不同的碳稳定同位素组成特征, 6种原油的正构烷烃δ13C值和分布曲线明显不同。单因素方差分析结果显示除个别油样外, 不同原油两两之间全油δ13C值和nC20的δ13C值差异性显著(P < 0.05)。实验结果表明, 特征比值和碳稳定同位素组成相结合能更加有效的区分不同种类原油, 油品中同位素组成特征差异可为原油种类鉴别和溯源提供一个有效的技术支撑。  相似文献   
8.
重金属健康风险评价对居民身体健康具有重要意义。使用电感耦合等离子体发射光谱仪(ICP-OES)测定了莱阳市农村的31个地下水体中重金属Cu、Fe、Zn、Mn、Cd和Cr的含量水平,阐明了该地区重金属的空间分布特征、来源及其迁移规律,并运用美国环保局推荐的健康风险评价模型对其引起的健康风险进行了评价。结果表明,该地区地下水中Cr未检出,Cu、Fe、Zn、Mn和Cd的浓度范围分别是0~59、23~905、29~50 700、3~2 999、0~1μg/L。根据我国饮用水质量标准,所有样点中Cu和Cd的浓度未超标,Zn、Mn和Fe的超标率分别为22.58%、16.13%和6.45%,个别样点超标倍数甚高。健康风险评价结果表明,Cu、Fe、Zn、Mn通过饮用水途径产生的健康风险平均值分别为3.49×10-10、1.91×10-10、100.50×10-10、37.40×10-10a-1,均远低于ICRP(5×10-5a-1)和USEPA(1×10-4a-1)的最大可接受风险水平。但是Zn和Mn对人体健康危害的平均个人年风险明显高于其他地区,因此,该研究区非致癌物Zn和Mn的污染来源及其环境行为应该引起重视。该研究为该区域水质污染状况研究及治理监管工作提供理论依据,为其他地区重金属的监测和质量控制提供参考。  相似文献   
9.
针对原有用于铜、铁、锌同位素分析的提纯步骤方法,我们专门对锌的提纯进行了改进,即在1mol/LHCl的介质条件下,采用200~400目AGMP-1M树脂提纯锌,大大简化了锌的提纯方法。在改进的实验条件下,地质样品的回收率接近100%;标准溶液在离子交换分离前后同位素组成一致,表明分离前后无Zn同位素分馏;全流程Zn的空白小于0.7ng/mL。此法可作为用于高精度Zn同位素分析的前处理方法。  相似文献   
10.
镍掺杂二氧化钛光催化剂的制备与光催化性能研究   总被引:1,自引:0,他引:1  
利用溶胶-凝胶法制备了镍掺杂的二氧化钛,采用紫外可见分光光度计、傅里叶红外分光光度计、X衍射仪(XRD)、扫描电镜(SEM)等测试手段对结果进行了表征。表征结果表明在550℃下煅烧的产物主要是锐钛型二氧化钛,镍的掺杂使得二氧化钛的紫外可见反射光谱明显红移,且镍掺杂二氧化钛的粒度减小,团聚程度下降。以活性艳蓝KN-R为模型降解目标物,通过比较镍掺杂二氧化钛、纯二氧化钛以及标准P25二氧化钛的光催化性能发现镍掺杂二氧化钛的光催化活性最好。当钛酸正丁酯/乙醇比为1:25;钛酸正丁酯/冰乙酸比为1:1;钛酸正丁酯/硝酸镍比为1 000:3;煅烧温度为550℃,煅烧时间为2 h时,镍掺杂二氧化钛的光催化效率最高,达到73.3%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号