首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
环保管理   1篇
综合类   1篇
污染及防治   8篇
评价与监测   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Temporal variations of atmospheric aerosol in four European urban areas   总被引:1,自引:0,他引:1  

Purpose

The concentrations of PM10 mass, PM2.5 mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter.

Methods

Daily PM10 and PM2.5 samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 ??g. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters.

Results

The 18-month mean PM10 and PM2.5 mass concentrations ranged from 15.4 ??g/m3 in Helsinki to 56.7 ??g/m3 in Athens and from 9.0 ??g/m3 in Helsinki to 25.0 ??g/m3 in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm3 in Helsinki to 24,180 part/cm3 in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM10 with the exception of Athens where PM2.5 comprised 43% of PM10. Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p?Conclusions Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies.  相似文献   
2.
The intake fraction (iF) has been defined as the integrated incremental intake of a pollutant released from a source category or region summed over all exposed individuals. In this study we evaluated the iFs in the population of Europe for emissions of anthropogenic primary fine particulate matter (PM2.5) from sources in Europe, with a more detailed analysis of the iF from Finnish sources. Parameters for calculating the iFs include the emission strengths, the predicted atmospheric concentrations, European population data, and the average breathing rate per person. Emissions for the whole of Europe and Finland were based on the inventories of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario (FRES) model, respectively. The atmospheric dispersion of primary PM2.5 was computed using the regional-scale dispersion model SILAM. The iFs from Finnish sources were also computed separately for six emission source categories. The iFs corresponding to the primary PM2.5 emissions from the European countries for the whole population of Europe were generally highest for the densely populated Western European countries, second highest for the Eastern and Southern European countries, and lowest for the Northern European and Baltic countries. For the entire European population, the iF values varied from the lowest value of 0.31 per million for emissions from Cyprus, to the highest value of 4.42 per million for emissions from Belgium. These results depend on the regional distribution of the population and the prevailing long-term meteorological conditions. Regarding Finnish primary PM2.5 emissions, the iF was highest for traffic emissions (0.68 per million) and lowest for major power plant emissions (0.50 per million). The results provide new information that can be used to find the most cost-efficient emission abatement strategies and policies.  相似文献   
3.
A simple procedure for correcting loading effects of aethalometer data   总被引:1,自引:0,他引:1  
A simple method for correcting for the loading effects of aethalometer data is presented. The formula BC(CORRECTED) = (1 + k x ATN) x BC(NONCORRECTED), where ATN is the attenuation and BC is black carbon, was used for correcting aethalometer data obtained from measurements at three different sites: a subway station in Helsinki, an urban background measurement station in Helsinki, and a rural station in Hyyti?l? in central Finland. The BC data were compared with simultaneously measured aerosol volume concentrations (V). After the correction algorithm, the BC-to-V ratio remained relatively stable between consequent filter spots, which can be regarded as indirect evidence that the correction algorithm works. The k value calculated from the outdoor sites had a clear seasonal cycle that could be explained by darker aerosol in winter than in summer. When the contribution of BC to the total aerosol volume was high, the k factor was high and vice versa. In winter, the k values at all wavelengths were very close to that obtained from the subway station data. In summer, the k value was wavelength dependent and often negative. When the k value is negative, the noncorrected BC concentrations overestimated the true concentrations.  相似文献   
4.
Forestry is the largest scale human impact affecting catchments in Finland and a prominent source of diffuse pollution in many water courses. Among the forestry activities, draining of wetlands had the most pronounced impacts on sediment, nutrient, and metal loading in the past. At present, renovation of old ditches and fertilization of peatlands constitute the major risk of forestry-induced diffuse pollution. Contemporary forestry aims at decreasing this risk with various riparian buffer strip designs. Among such designs, creation of overland flow areas by plugging the outlet ditches is increasingly used. Our objectives were to evaluate the potential of constructed overland flow areas to function as riparian buffers and estimate the quality and quantity of diffuse pollution from old versus recent forest drainages. We studied retention and release of pollutants from 20 constructed, 2- to 10-m-wide overland flow areas receiving drainage water from forested peatlands. Drainage waters were sampled above and below the plugged ditches three times per year from 1998 to 1999. Chemical oxygen demand and nutrient and metal loads and concentrations varied strongly between seasons, years, and drainage areas. Areas subjected to recent ditch renovations and fertilizations had clearly elevated seasonal loads and concentrations of total phosphorus (TP), PO4, Fe, and Al in comparison to old treatment areas. Especially TP loads were high above the national average values measured for forestry-induced diffuse pollution. In general, water quality above and below the buffer strips did not differ significantly. Our results indicate that plugged outlet ditches and associated narrow overland flow areas do not function as proper buffers in peatland areas. We suggest that wider buffers with extensive overland flow areas are needed in order to control diffuse pollution from forested and drained peatlands.  相似文献   
5.
In this study, long-term aerosol particle total number concentration measurements in five metropolitan areas across Europe are presented. The measurements have been carried out in Augsburg, Barcelona, Helsinki, Rome, and Stockholm using the same instrument, a condensation particle counter (TSI model 3022). The results show that in all of the studied cities, the winter concentrations are higher than the summer concentrations. In Helsinki and in Stockholm, winter concentrations are higher by a factor of two and in Augsburg almost by a factor of three compared with summer months. The winter maximum of the monthly average concentrations in these cities is between 10,000 cm(-3) and 20,000 cm(-3), whereas the summer min is approximately 5000-6000 cm(-3). In Rome and in Barcelona, the winters are more polluted compared with summers by as much as a factor of 4-10. The winter maximum in both Rome and Barcelona is close to 100,000 cm(-3), whereas the summer minimum is > 10,000 cm(-3). During the weekdays the maximum of the hourly average concentrations in all of the cities is detected during the morning hours between 7 and 10 a.m. The evening maxima were present in Barcelona, Rome, and Augsburg, but these were not as pronounced as the morning ones. The daily maxima in Helsinki and Stockholm are close or even lower than the daily minima in the more polluted cities. The concentrations between these two groups of cities are different with a factor of about five during the whole day. The study pointed out the influence of the selection of the measurement site and the configuration of the sampling line on the observed concentrations.  相似文献   
6.
Springtime urban road dust forms one of the most serious problems regarding air pollution in Finland. The composition and origin of springtime dust was studied in southern Finland with two different methods. Suspended particles (PM10 and TSP) were collected with high volume particle samplers and particle deposition was collected with moss bags. The composition of the PM(1.5-10) fraction was studied using individual particle analysis with SEM/EDX. The deposition in the moss bags was analysed with ICP-MS. The results showed that during the study period, approximately 10% of both PM(1.5-10) particles and the deposition originated from sanding. Other sources in the springtime PM(1.5-10) were e.g. asphalt aggregate or soil and combustion processes. It can be concluded that sanding produced a relatively small amount of particulate matter under the investigated circumstances.  相似文献   
7.
Airborne particulate matter (APM) samples collected at a semiresidential area in Dhaka, Bangladesh, during the periods of 1994 and 1997-2000 have been studied to assess the impact of the use of unleaded gasoline in Bangladesh. According to scanning electron microscopy/ energy-dispersive X-ray microanalyzer studies, lead (Pb) was found as Pb sulfates and Pb halides in motor-vehicle exhaust particles, whose diameters were some hundreds of nanometers. No significant changes in the annual averages of APM mass and black carbon concentrations have been observed over the period. The yearly average Pb concentration reached a maximum value of 370 ng/m3 in the particulate matter with an aerodynamic diameter < 2.5 microm fraction in 1998. In 2000, the concentration decreased to approximately one-third (106 ng/m3) of the high earlier values after the introduction of unleaded gasoline in 1999. A significant lowering of the blood Pb level of the population over next few years is expected as a result of this great decrease in Pb concentration.  相似文献   
8.
本文运用了以遥感为基础的土地利用和森林分类,研究了大流域氮输出-存留空间模型N_EXRET.根据经验研究,估算了用以描述农业、林业和泥炭产量(收获)所起作用的输出系数.通过一小块集水试验区内详细记录的数据,求得林业活动典型系数.讨论了将该模型应用于奥鲁(Oulujoki)河流域(22840km2)的模拟效果.将氮通量预估模型与该流域不同地点测得的氮能量值进行了比较.根据资源配比,农业占总输出的17%,变动范围为8%(最高的亚流域)约38%(最低的近海亚流域).林业约占16%,不同亚流域间变化较小(11%~24%).在各亚流域中,所得到的氮输出总额中有7%~37%存留下来.根据质量平衡和敏感度分析,估计湖泊存留为5~10kg/hm2·a,泥炭地为0~1kg/hm2·a.从三条邻近的河流流域中取得的试验数据证实了模型结论.但是,对那些土地利用和沉积格局与北部流域明显不同的流域,还需进一步研究.  相似文献   
9.
In this study, we present how an indoor aerosol model can be used to characterize particle emitter and predict influence of the source on indoor air quality. Particle size-resolved emission rates were quantified and the source’s influence on indoor air quality was estimated by using office model simulations. We measured particle emissions from three modern laser printers in a flow-through chamber. Measured parameters were used as input parameters for an indoor aerosol model, which we then used to quantify the particle emission rates. The same indoor aerosol model was used to simulate the effect of the particle emission source inside an office model. The office model consists of a mechanically ventilated empty room and the particle source. The aerosol from the ventilation air was a filtered urban background aerosol. The effect of the ventilation rate was studied using three different ventilation ratios 1, 2 and 3 h?1. According to the model, peak emission rates of the printers exceeded 7.0 × 108 s?1 (2.5 × 1012 h?1), and emitted mainly ultrafine particles (diameter less than 100 nm). The office model simulation results indicate that a print job increases ultrafine particle concentration to a maximum of 2.6 × 105 cm?3. Printer-emitted particles increased 6-h averaged particle concentration over eleven times compared to the background particle concentration.  相似文献   
10.
The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号