首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
废物处理   1篇
综合类   13篇
污染及防治   2篇
评价与监测   1篇
社会与环境   1篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2005年   4篇
  2003年   4篇
  1994年   2篇
  1989年   1篇
排序方式: 共有18条查询结果,搜索用时 531 毫秒
1.
Hazard classification of waste is a necessity, but the hazard properties (named “H” and soon “HP”) are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors.In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>1 0 0).Data for 45 wastes – documented with extensive chemical analysis and flammability test – were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values.This data set showed HP 14 ‘Ecotoxic chronic’ is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 ‘Carcinogenic’. The third most frequent hazard is HP 10 ‘Toxic for reproduction’ and the fourth most frequent hazard is HP 4 “Irritant – skin irritation and eye damage”. In a stepwise approach, it seems relevant to assess HP 14 first, then, if the waste is not classified as hazardous, to assess subsequently HP 7, HP 10 and HP 4, and then if still not classified as hazardous, to assess the remaining properties.The elements triggering the HP 14 classification in order of importance are Zn, Cu, Pb, Cr, Cd and Hg. Progress in the speciation of Zn and Cu is essential for HP 14. Organics were quantified by the proposed method (AFNOR XP X30-489) and need no speciation. Organics can contribute significantly to intrinsic toxicity in many waste materials, but they are only of minor importance for the assessment of HP 14 as the metal concentrations are the main HP 14 classifiers. Organic compounds are however responsible for other toxicological characteristics (hormone disturbance, genotoxicity, reprotoxicity…) and shall be taken into account when the waste is not HP 14 classified.  相似文献   
2.
3.
A case of fetal loss due to infection after first-trimester chorionic villus sampling is described. The fetus was born at 18 3/7 weeks and showed an annular constriction of one of the arms as seen in the amniotic band sequence. Induction of congenital defects might be one of the complications of chorionic villus sampling.  相似文献   
4.
5.
From 1982 to 1989, pregnant women in two large city hospitals in The Netherlands had serum samples screened for hepatitis B surface antigen (HBsAg). Infants of mothers found to be HBsAg-positive received hepatitis B immune globulin immediately after birth and hepatitis B vaccine in the first year of life. Blood samples of infants were regularly tested for HBsAg and antibodies directed against HBsAg. A retrospective analysis of the pregnancy outcome in HBsAg-positive women who had invasive tests for prenatal diagnosis was carried out to determine whether amniocentesis and chorionic villus sampling (CVS) are risk factors for the intrauterine transmission of the hepatitis B virus. Amniocentesis was carried out in 17 HBsAg-positive women and CVS in one case. Only two women were HBsAg- and HBeAg-positive. Prenatal diagnosis led to the termination of pregnancy for fetal chromosome abnormality in three cases. The remaining 15 pregnancies were uneventful; all infants were negative for HBsAg and developed an active immune response to the vaccine. These data suggest that amniocentesis in HBsAg-positive women constitutes a low risk for the intrauterine transmission of the hepatitis B virus, but definite conclusions in HBeAg-positive women cannot be drawn.  相似文献   
6.
Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices.  相似文献   
7.
8.
Non-invasive prenatal testing (NIPT) based on analysis of cell free DNA circulating in the maternal plasma has been available clinically to screen for chromosomal abnormalities since 2011. There is significant evidence to suggest that NIPT has revolutionised prenatal screening for the common trisomies 13, 18, and 21. However, the evidence in favour of its extended use to screen for conditions other than these trisomies remains a topic of debate with no national or international organisation supporting clinical implementation for these indications. In the debate presented here – "Expanded NIPT that includes conditions other than trisomies 13, 18, and 21 should be offered" – we will see the pros and cons of screening for a wider range of chromosomal problems. The discussion presented swung the vote from 65% in favour and 35% against before the arguments were voiced to 41% in favour and 59% against. This significant swing in the vote indicates that the majority of our community feel more evidence is required before clinical implementation of extended NIPT.  相似文献   
9.
10.
Several alternative methods for the disposal of chromated copper arsenate (CCA) treated wood waste have been studied in the literature, and these methods are reviewed and compared in this paper. Alternative disposal methods include: recycling and recovery, chemical extraction, bioremediation, electrodialytic remediation and thermal destruction. Thermochemical conversion processes are evaluated in detail based on experiments with model compounds as well as experimental and modelling work with CCA treated wood. The latter category includes: determination of the percentage of arsenic volatilised during thermal conversion of CCA treated wood, identification of the mechanisms responsible for arsenic release, modelling of high temperature equilibrium chemistry involved when CCA treated wood is burned, overview of options available for arsenic capture, characterisation of ash resulting from (co-)combustion of CCA treated wood, concerns about polychlorinated dibenzo-p-dioxins/furans (PCDD/F) formation. Finally, the most appropriate thermochemical disposal technology is identified on short term (co-incineration) and on long term (low-temperature pyrolysis or high-temperature gasification).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号