首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
环保管理   2篇
综合类   5篇
基础理论   2篇
污染及防治   2篇
  2019年   5篇
  2013年   2篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  1991年   1篇
排序方式: 共有11条查询结果,搜索用时 125 毫秒
1.
Cobalt is an essential element, but at high concentrations it is toxic. In addition to its well-known function as an integral part of cobalamin (vitamin B12), cobalt has recently been shown to be a mimetic of hypoxia and a stimulator of the production of reactive oxygen species. The present study investigated the responses of goldfish, Carassius auratus, to 96 h exposure to 50, 100 or 150 mg L−1 Co2+ in aquarium water (administered as CoCl2). The concentrations of cobalt in aquaria did not change during fish exposure. Exposure to cobalt resulted in increased levels of lipid peroxides in brain (a 111% increase after exposure to 150 mg L−1 Co2+) and liver (30-66% increases after exposure to 50-150 mg L−1 Co2+), whereas the content of protein carbonyls rose only in kidney (by 112%) after exposure to 150 mg L−1 cobalt. Low molecular mass thiols were depleted by 24-41% in brain in response to cobalt treatment. The activities of primary antioxidant enzymes, superoxide dismutase (SOD) and catalase, were substantially suppressed in brain and liver as a result of Co2+ exposure, whereas in kidney catalase activity was unchanged and SOD activity increased. The activities of glutathione-related enzymes, glutathione peroxidase and glutathione-S-transferase, did not change as a result of cobalt exposure, but glutathione reductase activity increased by ∼40% and ∼70% in brain and kidney, respectively. Taken together, these data show that exposure of fish to Co2+ ions results in the development of oxidative stress and the activation of defense systems in different goldfish tissues.  相似文献   
2.
The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h−1 for atrazine and 0.039 h−1 for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters.  相似文献   
3.

Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO2), gridded EI Open-source Data Inventory for Anthropogenic CO2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.

  相似文献   
4.

The development of high-resolution greenhouse gas (GHG) inventories is an important step towards emission reduction in different sectors. However, most of the spatially explicit approaches that have been developed to date produce outputs at a coarse resolution or do not disaggregate the data by sector. In this study, we present a methodology for assessing GHG emissions from the residential sector by settlements at a fine spatial resolution. In many countries, statistical data about fossil fuel consumption is only available at the regional or country levels. For this reason, we assess energy demand for cooking and water and space heating for each settlement, which we use as a proxy to disaggregate regional fossil fuel consumption data. As energy demand for space heating depends heavily on climatic conditions, we use the heating degree day method to account for this phenomenon. We also take the availability of energy sources and differences in consumption patterns between urban and rural areas into account. Based on the disaggregated data, we assess GHG emissions at the settlement level using country and regional specific coefficients for Poland and Ukraine, two neighboring countries with different energy usage patterns. In addition, we estimate uncertainties in the results using a Monte Carlo method, which takes uncertainties in the statistical data, calorific values, and emission factors into account. We use detailed data on natural gas consumption in Poland and biomass consumption for several regions in Ukraine to validate our approach. We also compare our results to data from the EDGAR (Emissions Database for Global Atmospheric Research), which shows high agreement in places but also demonstrates the advantage of a higher resolution GHG inventory. Overall, the results show that the approach developed here is universal and can be applied to other countries using their statistical information.

  相似文献   
5.
Mitigation and Adaptation Strategies for Global Change - Agricultural activity plays a significant role in the atmospheric carbon balance as a source and sink of greenhouse gases (GHGs) and has...  相似文献   
6.
Due to variations in soil physicochemical properties, species physiology, and contaminant speciation, Pb toxicity is difficult to evaluate without conducting in vivo dose-response studies. Such tests, however, are expensive and time consuming, making them impractical to use in assessment and management of contaminated environments. One possible alternative is to develop a physiologically based extraction test (PBET) that can be used to measure relative bioaccessibility. We developed and correlated a PBET designed to measure the bioaccessibility of Pb to waterfowl (W-PBET) in mine-impacted soils located in the Coeur d'Alene River Basin, Idaho. The W-PBET was also used to evaluate the impact of P amendments on Pb bioavailability. The W-PBET results were correlated to waterfowl-tissue Pb levels from a mallard duck [Anas platyrhynchos (L.)] feeding study. The W-PBET Pb concentrations were significantly less in the P-amended soils than in the unamended soils. Results from this study show that the W-PBET can be used to assess relative changes in Pb bioaccessibility to waterfowl in these mine-impacted soils, and therefore will be a valuable test to help manage and remediate contaminated soils.  相似文献   
7.
Mitigation and Adaptation Strategies for Global Change - The assessment of greenhouse gases (GHGs) and air pollutants emitted to and removed from the atmosphere ranks high on international...  相似文献   
8.
Sample drying effects on lead bioaccessibility in reduced soil   总被引:1,自引:0,他引:1  
Risk-assessment tests of contaminated wetland soils often use experimental protocols that artificially oxidize the soils. Oxidation may impact bioavailability of contaminants from the soils, creating erroneous results and leading to improper management and remediation. The goal of this study was to determine if oxygenation of reduced sediments and soils influences Pb bioaccessibility measurements. The study site is located on the Coeur d'Alene River floodplain, downstream from the Silver Valley Mining District in Idaho. A physiologically based extraction test designed to simulate the gastrointestinal tract of waterfowl (W-PBET) was used to measure relative Pb bioavailability (bioaccessibility) from the soils. The soils were collected from a submerged wetland. One set of samples was allowed to air-dry, another set was freeze-dried, and a third set was analyzed wet. The wet soil showed decreased Pb bioaccessibility compared with the air- and freeze-dried soils. The changes in extractability of Fe and Mn on air-drying were opposite from each other: Fe extractability decreased while Mn increased. The results from this study show that redox changes may have significant impacts on Pb bioavailability, and should be considered when assessing Pb contamination risks in reduced soils.  相似文献   
9.

Greenhouse gas (GHG) inventories at national or provincial levels include the total emissions as well as the emissions for many categories of human activity, but there is a need for spatially explicit GHG emission inventories. Hence, the aim of this research was to outline a methodology for producing a high-resolution spatially explicit emission inventory, demonstrated for Poland. GHG emission sources were classified into point, line, and area types and then combined to calculate the total emissions. We created vector maps of all sources for all categories of economic activity covered by the IPCC guidelines, using official information about companies, the administrative maps, Corine Land Cover, and other available data. We created the algorithms for the disaggregation of these data to the level of elementary objects such as emission sources. The algorithms used depend on the categories of economic activity under investigation. We calculated the emissions of carbon, nitrogen sulfure and other GHG compounds (e.g., CO2, CH4, N2O, SO2, NMVOC) as well as total emissions in the CO2-equivalent. Gridded data were only created in the final stage to present the summarized emissions of very diverse sources from all categories. In our approach, information on the administrative assignment of corresponding emission sources is retained, which makes it possible to aggregate the final results to different administrative levels including municipalities, which is not possible using a traditional gridded emission approach. We demonstrate that any grid size can be chosen to match the aim of the spatial inventory, but not less than 100 m in this example, which corresponds to the coarsest resolution of the input datasets. We then considered the uncertainties in the statistical data, the calorific values, and the emission factors, with symmetric and asymmetric (lognormal) distributions. Using the Monte Carlo method, uncertainties, expressed using 95% confidence intervals, were estimated for high point-type emission sources, the provinces, and the subsectors. Such an approach is flexible, provided the data are available, and can be applied to other countries.

  相似文献   
10.
The New York Bight is perhaps one of the most used and abused coastal areas in the world as a consequence of urbanization and the disposal of the waste of some 20 million people who reside by its shores and surrounding bays and estuaries. A variety of sources, including those associated with sewage wastes, industrial wastes, contaminated dredged material, urban runoff, and atmospheric fallout contaminate these coastal waters. Many of the stresses of excess population and industrialization as measured by pollutant loadings and ecosystem impacts can be crudely quantified in terms of use impairments-use impairments that have measurable social and economic relevance. Five broad categories of impairment attributed to pollution in the Bight that are causing significant losses of ecological, economic, or social values are: beach closures, unsafe seafoods, hazards to commercial and recreational navigation, loss of commercial and recreational fisheries, and declines in birds, mammals and turtles. These impairments are generally caused by floatable wastes, nutrients, toxicants, pathogens and habitat loss. Measures of such impairments are not standard, nor in many cases totally quantifiable. We have examined specific subsets of these impairments in terms of their spatial and temporal changes and as a first approximation determined the economic and social significance of these changes. the cost of these impaired uses of the Bight are measured in terms of billions of dollars annually for New York and New Jersey.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号