首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
安全科学   5篇
废物处理   1篇
环保管理   1篇
综合类   2篇
基础理论   2篇
污染及防治   2篇
评价与监测   1篇
  2020年   1篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2008年   1篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
To develop a high performance environment friendly material, highly branched polyester/clay nanocomposites have been prepared from Mesua ferrea Linn seed oil-based polyester resin and hydrophilic bentonite nanoclay. The prepared nanocomposites were characterized by Fourier transform infra-red spectroscopy, X-ray diffractometer, scanning electron microscope, transmission electron microscope and rheological studies. Partial exfoliation of clay layers by the polymer chains with good interfacial interactions was observed in the nanocomposites. The formation of delaminated nanocomposites was manifested through the enhancement of tensile strength, scratch hardness, chemical resistance, impact resistance, thermostability, etc. The results show enhancement of three times in tensile strength and 18 °C in thermostability by inclusion of 5 wt% nanoclay as compared to the pristine polymer. By the influence of 5 wt% nanoclay four times enhancement in elongation at break as compared to the pristine polymer was noticed. Thus these nanocomposites have the potential to be used in many advanced applications.  相似文献   
2.
Arsenic (As) is a metalloid that poses serious environmental threats due to its behemoth toxicity and wide abundance. The use of arsenic-contaminated groundwater for irrigation purpose in crop fields elevates arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh and India, rice is reported to be one of the major sources of arsenic contamination. Rice is much more efficient at accumulating arsenic into the grains than other staple cereal crops. Rice is generally grown in submerged flooded condition, where arsenic bioavailability is high in soil. As arsenic species are phytotoxic, they can also affect the overall production of rice, and can reduce the economic growth of a country. Once the foodstuffs are contaminated with arsenic, this local problem can gain further significance and may become a global problem, as many food products are exported to other countries. Large-scale use of rainwater in irrigation systems, bioremediation by arsenic-resistant organisms and hyperaccumulating plants, and the aerobic cultivation of rice are some possible ways to reduce the extent of bioaccumulation in rice. Investigation on a complete food chain is urgently needed in the arsenic-contaminated zones, which should be our priority in future researches.  相似文献   
3.
The transportation of hazardous materials by road is an utmost necessity of the world for the societal benefits, but at the same time the activity is inherently dangerous. Incidents involving hazardous material (hazmat) cargo particularly the class-2 materials can lead to severe consequences in terms of fatalities, injuries, evacuation, property damage and environmental degradation. The rationale behind considering class-2 hazmats is that they pose the greatest danger to the people and property along the transport route because of their storage condition on the transport vessel. They are stored either in pressurized vessels or in cryogenic containers. Any external impact due to collision may cause catastrophic failure of transport vessels, known as BLEVE (Boiling Liquid Expanding Vapour Explosion) with devastating consequences. Further, any continuous release from containment may cause what is known as ‘Unconfined Vapour Cloud Explosion’ (UVCE). Historically frequency of BLEVE occurrence is of the order of 1 × 10−6 per year or less, but other release scenarios e.g. a large vapour or liquid leaks are more probable and could also have devastating effects on the surrounding population. As such, the paper discussed various event scenarios and the consequences taking examples of a class-2.1 material (1,3 butadiene) and another class-2.3 (ammonia) hazmat. Comparative analysis suggests that per ton basis a rupture of ammonia tanker gives rise to larger impact areas and poses larger lethality risks compared to 1,3 butadiene as far as toxic effects are concerned. Besides, from fireball fatality on similar basis propylene causes higher consequence distance than LPG followed by ethylene oxide and 1,3 butadiene. The impact zone study results may be utilized as inputs for identifying the potential vulnerable area on a GIS enabled map, along a designated State highway route passing through an important industrial corridor in western India.  相似文献   
4.
United Nations Class-3 hazardous materials (hazmats) are basically liquid products and transported in road tankers under ambient temperature and atmospheric pressure. They are mostly flammables and some of them are toxic (e.g. benzene) as well. The spillages due to collision related incidents involving the road tankers, carrying such hazmats through highways, pose not only flammability hazards due to pool fire, flash fire and vapor cloud explosion (VCE), but create substantial toxic hazards also. The paper presents the risk-based study of route evaluation of two state highways and one urban city road in western India on account of transportation of class-3 hazmats, namely benzene, toluene, p-xylene, methanol, cyclohexane and acetone. A comparative evaluation of study routes was undertaken based on their societal risks presented in terms of FN curves and assessed against HSE, UK as well as VROM, The Netherlands risk acceptance criteria. Societal risks contribution of cyclohexane to the overall flammability risk mainly VCE is found to be the highest followed by acetone and benzene compared to other study hazmats. This is due to highly explosive nature of cyclohexane resulting into vapor cloud explosion. While acetone and methanol pool fires are likely to cause larger area of damage compared to others, benzene supersedes others as far as toxicity risk is concerned and larger evacuation area is encountered, as it poses greater Immediately Dangerous to Life or Health (IDLH) distance than others. Besides, study of initial isolation distance following an accident in case of benzene tanker found that benzene spillage requires larger initial isolation distance than others and so are the day and night protective action zone distances.  相似文献   
5.
Rewalsar Lake, a mid-altitude, shallow and recreational water body located in the north-western Himalayas, Himachal Pradesh (India) was studied through monthly surveys in two consecutive years (March 2008 to February 2010). Forty-seven species belonging to seven groups of phytoplankton were identified from the lake. Microcystis aeruginosa and Synedra ulna exhibited a perennial habit. Ankistrodesmus falcatus, Chlorella vulgaris, Scenedesmus bijugatus, Chlamydomonas reinhardi, Eudorina elegans, Navicula cuspidate, Synedra ulna, Euglena acus, Euglena oxyuris, Spirulina gomontii, Oscillatoria princeps and Arthrospira khannae were abundant, and Oscillatoria limosa and Microcystis aeruginosa were highly abundant. Twenty-one important criteria were studied, for example, temperature, free carbon dioxide, biochemical oxygen demand, total alkalinity, nitrate, silicate and phosphate, which provide an idea of the portability of water for irrigation and drinking purposes as per the permissible limits given in World Health Organization, Indian Council of Medical Research and Indian Standards Institute standards. Pearson's correlation revealed a significant relationship between physicochemical parameters and different algal groups. Both plankton and chlorophyll a showed a bimodal pattern of fluctuation. High annual mean concentrations of chlorophyll a (mg L?1) were recorded as 11.44 in 2008–09, and 11.04 in 2009–10. As per the Palmer pollution index, 13 pollution-tolerant algal species with a pollution score of 37 were observed. The Central Pollution Control Board categorised the water at Rewalsar Lake as ‘D–E’.  相似文献   
6.
The present study deals with the limnobiotic status of three selected lakes of Himachal Pradesh using physicochemical and biological parameters (especially phytoplankton and zooplankton) over a period of 2 years. One hundred forty-eight species belonging to nine groups of phytoplankton and 79 species belonging to five groups of zooplankton were identified from the lakes. Trophic level and the pollution status of the lakes were assessed upon the basis of Shannon diversity index (H′), species richness index (S), and physicochemical parameters. Plankton population size was correlated with biotic and abiotic parameters (pH, alkalinity, temperature, dissolved oxygen, transparency, phosphate, chloride, and nitrate). The present investigation revealed that the distribution of plankton species depended upon the physicochemical parameters of the environment. Based on water quality standards given by the Central Pollution Control Board, the water quality was between “A–B” at Prashar wetland, “C–D” at Kuntbhyog Lake, and “D–E” at Rewalsar Lake. The results from the present study indicated that the potential of planktons as bioindicators of trophic status is very high.  相似文献   
7.
Earthworms’ body works as a ‘biofilter’ and they have been found to remove the 5 days’ BOD (BOD5) by over 90%, COD by 80–90%, total dissolved solids (TDS) by 90–92%, and the total suspended solids (TSS) by 90–95% from wastewater by the general mechanism of ‘ingestion’ and biodegradation of organic wastes, heavy metals, and solids from wastewater and also by their ‘absorption’ through body walls. Earthworms increase the hydraulic conductivity and natural aeration by granulating the clay particles. They also grind the silt and sand particles, increasing the total specific surface area, which enhances the ability to ‘adsorb’ the organics and inorganic from the wastewater. Intensification of soil processes and aeration by the earthworms enable the soil stabilization and filtration system to become effective and smaller in size. Suspended solids are trapped on top of the vermifilter and processed by earthworms and fed to the soil microbes immobilized in the vermifilter. There is no sludge formation in the process which requires additional expenditure on landfill disposal. This is also an odor-free process and the resulting vermifiltered water is clean and disinfected enough to be reused for farm irrigation and in parks and gardens G. Bharambe—GU & Research Assistant (Under Rajiv K. Sinha), U. Chaudhari—GU (Worked on vermiculture project).  相似文献   
8.
Risk-based hazmat transportation route evaluation involves risk calculations taking into consideration the probability of collision related accident occurrence and detailed consequence analysis of various event scenarios. Probabilistic hazmat transportation risk assessment mainly depends on three important factors i.e. accident rate, Average Daily Traffic and population density besides route length which has a definite bearing on it. An effort has been made to estimate the route segment specific (location-specific) accident rate instead of aggregate National or State average values in order to bring specificity into the issue of decision making to avoid routes with higher accident rates. Instead of using default accident rate for different highway types developed with the US data, which are not well-comparable when used in Indian situations; the author used site-specific truck accident data. Subsequently, Loss of Containment (LOC) probabilities and spillage probabilities for different route segments have been computed and compared. Finally, route segment-wise total risk is estimated which is a convenient measure of the average number of persons likely to be exposed from all the possible consequence event scenarios resulting from releases of different hazmats being transported along the studied routes. The present study highlights the route evaluation carried out based on total risk computation, without going through detailed event based consequence analysis on two State Highway routes and one major urban road passing through important industrial corridors of Surat District in western India, to enable routing decisions by local authorities and also for planning emergency mitigation purposes.  相似文献   
9.
Microalgae: a promising tool for carbon sequestration   总被引:1,自引:1,他引:0  
Increasing trends in global warming already evident, the likelihood of further rise continuing, and their impacts give urgency to addressing carbon sequestration technologies more coherently and effectively. Carbon dioxide (CO2) is responsible for over half the warming potential of all greenhouse gases (GHG), due to the dependence of world economies on fossil fuels. The processes involving CO2 capture and storage (CCS) are gaining attention as an alternative for reducing CO2 concentration in the ambient air. However, these technologies are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes. A promising technology could be the biological capture of CO2 using microalgae due to its unmatched advantages over higher plants and ocean fertilization. Microalgae are phototrophic microorganisms with simple nutritional requirements, and comprising the major primary producers on this planet. Specific pathways include autotrophic production via both open pond or closed photobioreactor (PBR) systems. Photosynthetic efficiency of microalgae ranged from 10?C20 % in comparison with 1?C2 % of most terrestrial plants. Some algal species, during their exponential growth, can double their biomass in periods as short as 3.5 hours. Moreover, advantage of being tolerant of high concentration of CO2 (flue gas), low light intensity requirements, environmentally sustainable, and co-producing added value products put these as the favoured organisms. Advantages of microalgae in comparison with other sequestration methodologies are discussed, which includes the cultivation systems, the key process parameters, wastewater treatment, harvesting and the novel bio-products produced by microalgal biomass.  相似文献   
10.
Synthetic crystalline hydrous ferric oxide (CHFO) (particle size 0.14 to 0.29 mm) has been used systematically for adsorptive chromium(VI) removal from contaminated water. Batch experiments were performed as a function of pH, contact time, solute concentration, and regeneration of adsorbents. Column experiments were performed for breakthrough points in the presence and absence of other ions and treatment of industrial effluent. The optimum pH range was 2.0 to 4.0. The adsorption kinetic data could be described well by both second-order and pseudo-first-order models. The isotherm adsorption data at 30 +/- 2 degrees C obeyed the Langmuir model best. The monolayer adsorption capacity was 35.7 mg/g. Chromium(VI)-rich CHFO could be regenerated up to 89 +/- 1% with 2.0 M sodium hydroxide. Regenerated column reuse showed a decrease (10 to 12%) in breakthrough capacity. Finally, the CHFO- (dried at 300 degrees C) packed column was used for the recovery (98.5 +/- 1.0%) of chromium(VI) from contaminated industrial waste effluent of Hindustan Motor Limited (Hooghly, West Bengal, India).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号