首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   9篇
综合类   10篇
污染及防治   1篇
评价与监测   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2012年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles(Fe_2O_3-NPs) in Raphanus sativus(radish).Fe_2O_3-NPs retarded the root length and seed germination in radish.Ultrathin sections of treated roots showed subcellular localization of Fe_2O_3-NPs,along with the appearance of damaged mitochondria and excessive vacuolization.Flow cytometric analysis of Fe_2O_3-NPs(1.0 mg/m L) treated groups exhibited 219.5%,161%,120.4% and 161.4% increase in intracellular reactive oxygen species(ROS),mitochondrial membrane potential(ΔΨm),nitric oxide(NO) and Ca2+influx in radish protoplasts.A concentration dependent increase in the antioxidative enzymes glutathione(GSH),catalase(CAT),superoxide dismutase(SOD) and lipid peroxidation(LPO) has been recorded.Comet assay showed a concentration dependent increase in deoxyribonucleic acid(DNA) strand breaks in Fe_2O_3-NPs treated groups.Cell cycle analysis revealed 88.4% of cells in sub-G1 apoptotic phase,suggesting cell death in Fe_2O_3-NPs(2.0 mg/m L) treated group.Taking together,the genotoxicity induced by Fe_2O_3-NPs highlights the importance of environmental risk associated with improper disposal of nanoparticles(NPs) and radish can serve as a good indicator for measuring the phytotoxicity of NPs grown in NP-polluted environment.  相似文献   
2.
Food and Environmental Virology - Roof-harvested rainwater (RHRW) is considered relatively clean water, even though the possible presence of pathogens in the water may pose human health risks. In...  相似文献   
3.
Environmental Science and Pollution Research - Large-scale wastewater schemes rely on multi-barrier approach for the production of safe and sustainable recycled water. In multi-barrier wastewater...  相似文献   
4.
Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising alternative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200 mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance.  相似文献   
5.
A quantitative PCR(q PCR) assay was used to quantify Ancylostoma caninum ova in wastewater and sludge samples.We estimated the average gene copy numbers for a single ovum using a mixed population of ova.The average gene copy numbers derived from the mixed population were used to estimate numbers of hookworm ova in A.caninum seeded and unseeded wastewater and sludge samples.The newly developed qP CR assay estimated an average of3.7 × 10~3 gene copies per ovum,which was then validated by seeding known numbers of hookworm ova into treated wastewater.The qP CR estimated an average of(1.1 ± 0.1),(8.6 ± 2.9)and(67.3 ± 10.4) ova for treated wastewater that was seeded with(1 ± 0),(10 ± 2) and(100 ± 21)ova,respectively.The further application of the q PCR assay for the quantification of A.caninum ova was determined by seeding a known numbers of ova into the wastewater matrices.The qP CR results indicated that 50%,90% and 67% of treated wastewater(1 L),raw wastewater(1 L)and sludge(~4 g) samples had variable numbers of A.caninum gene copies.After conversion of the q PCR estimated gene copy numbers to ova for treated wastewater,raw wastewater,and sludge samples,had an average of 0.02,1.24 and 67 ova,respectively.The result of this study indicated that qP CR can be used for the quantification of hookworm ova from wastewater and sludge samples;however,caution is advised in interpreting qP CR generated data for health risk assessment.  相似文献   
6.
The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans,aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season(before and after precipitation)between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction,solid phase extraction and dispersive liquid–liquid micro-extraction are time-consuming and difficult to perform; therefore,there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc(133.50–419.30 μg/m~3)and aluminum(53.58–378.93 μg/m~3)had higher concentrations in atmospheric samples as compared to lake samples before precipitation.On the other hand,the concentrations of zinc,aluminum,chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters(pH and turbidity)and heavy metal concentrations was investigated as well. Furthermore,enrichment factor analysis indicated that anthropogenic sources such as soil dust,biomass burning and fuel combustion influenced the metal concentrations in the atmosphere.  相似文献   
7.
Potable and non-potable uses of roof-harvested rainwater (RHRW) are increasing due to water shortages. To protect human health risks, it is important to identify and quantify disease-causing pathogens in RHRW so that appropriate treatment options can be implemented. We used a microfluidic quantitative PCR (MFQPCR) system for the quantitative detection of a wide array of fecal indicator bacteria (FIB) and pathogens in RHRW tank samples along with culturable FIB and conventional qPCR analysis of selected pathogens. Among the nine pathogenic bacteria and their associated genes tested with the MFQPCR, 4.86 and 2.77% samples were positive for Legionella pneumophila and Shigella spp., respectively. The remaining seven pathogens were absent. MFQPCR and conventional qPCR results showed good agreement. Therefore, direct pathogen quantification by MFQPCR systems may be advantageous for circumstances where a thorough microbial analysis is required to assess the public health risks from multiple pathogens that occur simultaneously in the target water source.  相似文献   
8.
The treatment of microglial BV-2 cells with sodium arsenate(As(V):0.1-400 μmol/L — 48 hr)induces a dose-dependent response.The neurotoxic effects of high concentrations of As(V)(100,200 and 400 μmol/L) are characterized by increased levels of mitochondrial complexesⅠ,Ⅱ,and Ⅳ followed by increased superoxide anion generation.Moreover,As(V) triggers an apoptotic mode of cell death,demonstrated by an apoptotic SubG1 peak,associated with an alteration of plasma membrane integrity.There is also a decrease in transmembrane mitochondrial potential and mitochondrial adenosine triphosphate ATP.It is therefore tempting to speculate that As(V) triggers mitochondrial dysfunction,which may lead to defective oxidative phosphorylation subsequently causing mitochondrial oxidative damage,which in turn induces an apoptotic mode of cell death.  相似文献   
9.
The photocatalytic activity of Fe-doped TiO2 nanoparticles is significantly increased by an acid-treatment process. The photocatalyst nanoparticles were prepared using sol–gel method with 0.5 mol% ratio of Fe:Ti in acidic pH of 3. The nanoparticles were structurally characterized by means of X-ray diffraction(XRD), high-resolution transmission electron microscope(HRTEM), energy-dispersive X-ray spectroscopy(EDX), X-ray photoelectron spectroscopy(XPS) and diffuse reflectance spectroscopy(DRS). It was observed that the photocatalytic activity suffered from an iron oxide contaminating layer deposited on the surface of the nanoparticles. This contamination layer was removed using an HCl acidtreatment process. The photocatalytic activity using 500 mg/L of Fe0.5-TiO2 in a 10 mg/L of phenol solution increased significantly from 33% to 57%(about 73% increase in the performance), within 90 min of reaction time under visible light irradiation. This significant improvement was achieved by removing the iron oxide contamination layer from the surface of the nanoparticles and adjusting p H to mild acidic and basic pHs.  相似文献   
10.
A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles(NPs)were produced through single-step pyrolysis of FeCl_3–Ti(OBu)_4 laden agar biomass under NH_3 environment.The physiochemical properties of composites were characterized thoroughly.It has found that heating temperature and N-doping through NH_3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites.The catalytic activities of composites were measured by degradation of Methylene Blue(MB)in the presence or absence of H_2O_2 and visible-light irradiation.Our best catalyst(N–TiO_2–Fe_3O_4-biochar)exhibits rapid and high MB removal competency(99.99%)via synergism of adsorption,photodegradation,and Fenton-like reaction.Continuous production of O_2U~-and UOH radicles performs MB degradation and mineralization,confirmed by scavenging experiments and degradation product analysis.The local trap state Ti~(3+),Fe_3O_4,and N-carbon of the catalyst acted as active sites.It has suggested that the Ti~(3+)and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction.Moreover,the catalyst is highly stable,collectible,and recyclable up to 5 cycles with high MB degradation efficiency.This work provides a new insight into the synthesis of highly visible-light sensitized biocharsupported photocatalyst through NH_3-ambiance pyrolysis of NPs-laden biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号