首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   7篇
污染及防治   1篇
  2002年   1篇
  1961年   1篇
  1960年   3篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有8条查询结果,搜索用时 390 毫秒
1
1.
2.
3.
4.
Two bacterial tests employing Photobacterieum phosphoreum (Microtox bioluminescence test) and Salmonella typhimurium TA 1535 pSK1002 (umu-assay) were evaluated to estimate the cytotoxic and genotoxic potential of water samples from the selected rivers in Germany as well as the primary and secondary effluents of some sewage treatment plants. Rainbow trout (Onchorynchus mykiss) were exposed to different concentrations (20-40%) of secondary effluent in the model online aquatic monitoring plant WaBoLu-Aquatox. The toxic potential of water samples from the exposure tanks was determined in two prokaryotic test systems and the biomarkers acethylcholinesterase (AChE) activity in muscle tissue and DNA unwinding assay in liver tissue of fish. Samples from the tested rivers showed no inhibition of the bioluminescence of P. phosphoreum or growth of umu-bacteria. Only primary effluent samples from the treatment plants at the Saale River inhibited the light emission or the growth of test bacteria by more than 20%. The induction ratio of umu-bacteria was in most of the river samples less than the threshold for genotoxicity (IR < 1.5). Only some samples from the Saale River, especially at sites downstream of secondary effluents caused genotoxic responses in the umu-assay. Samples of primary effluents contained the greatest genotoxic potential up to GEUI = 6 which was not detectable in samples of secondary effluents. A concentration range 20-40% secondary effluent inhibited AChE activity in muscle tissue and significantly increased DNA fragmentation in liver tissue of rainbow trout. In contrast, no cytotoxic or genotoxic responses in the umu-assay were caused by water samples. Both bacterial methods can be successfully used to analyse the cytotoxic and genotoxic response of industrial and domestic wastewater and to estimate the effectiveness of sewage treatment units. However, because of their low sensitivity and high susceptibility, they are not reliable as a single test for the detection of cytotoxicity and genotoxicity in surface water. The application of prokaryotic tests systems with biomarkers such as AChE activity and DNA fragmentation in different tissues of test organisms seems to be a useful combination for the assessment of cytotoxic and genotoxic potential in surface water and secondary effluent.  相似文献   
5.
6.
7.
The Science of Nature -  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号