首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   2篇
安全科学   4篇
废物处理   39篇
环保管理   26篇
综合类   29篇
基础理论   64篇
环境理论   1篇
污染及防治   80篇
评价与监测   11篇
社会与环境   10篇
灾害及防治   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   6篇
  2014年   10篇
  2013年   16篇
  2012年   8篇
  2011年   9篇
  2010年   12篇
  2009年   11篇
  2008年   13篇
  2007年   9篇
  2006年   10篇
  2005年   28篇
  2004年   16篇
  2003年   7篇
  2002年   5篇
  2001年   9篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1992年   12篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1955年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
1.
2.
Radioactive sulphate (35SO4) was applied to the soil below a Scots pine forest on 23 June 1989, and its movement into the canopy and into throughfall and stemflow was measured over 4 months. The specific activity, Bq (mg S)(-1), of the canopy increased monotonically; uptake by current-year (1989) expanding needles was initially twice as fast as by older needles or live twigs. By 10 October the canopy average specific activity was 62 Bq (mg S)(-1). The specific activity of net throughfall (throughfall + stemflow - rain), deduced from measurements from six throughfall collectors, six stemflow collectors and two rain collectors, fell rapidly from 12.6 Bq (mg S)(-1) in late July to <1 Bq (mg S)(-1) in mid-August. The results suggest (assuming rapid equilibration of 35S with sulphate in soil) that root-derived sulphate contributed c. 3% of sulphate in net throughfall and that dry deposition of SO2 and sulphate particles contributed c. 97% of the 0.56 g S m(-2) measured in net throughfall over the period. Simultaneous measurements of SO2 at canopy height and of NH3 above and within the canopy gave mean concentrations of 5.9 and 0.86 microg m(-3), respectively, sufficient to account for the sulphate measured in net throughfall only if codeposition of NH3 and SO2 occurred to canopy surfaces. The large values of specific activity observed in July, however, indicate that throughfall composition may be closely related to recent soil input of sulphate, and that equilibrium cannot be safely assumed. The possibility of a significant contribution of soil-derived sulphate to sulphate deposition in net throughfall cannot be ruled out on the basis of this experiment.  相似文献   
3.
Micrometeorological methods were applied to measure fluxes of atmospheric ammonia (NH3) to moorlands. Measurements were made in a wide variety of surface conditions and included both Calluna vulgaris (L.) Hull and Eriophorum vaginatum L. dominated sites. NH3 was found to deposit rapidly to all the sites investigated, providing large deposition velocities (Vd, typically 10-40 mm s(-1)) and usually minimal surface resistances (rc). A small number of measurements were made in frozen conditions and suggest a possible exception to this pattern with mean rc of 50-200 s m(-1). The effect of vegetation drying was also investigated and a possible increase in rc observed, though this was small (< 10 s m(-1)). The results are interpreted in terms of the processes controlling exchange; it is shown that NH3 deposition is predominantly to the leaf surfaces and that the net NH3 compensation point approaches zero. Annual estimates show that dry deposition of NH3 is a major source of atmospheric nitrogen to moorland ecosystems. For two typical UK sites subject to background air concentrations, NH3 dry deposition is of similar magnitude to equivalent NH4+ inputs in wet deposition. In the vicinity of emission sources, NH3 dry deposition is expected to dominate inputs of atmospheric nitrogen.  相似文献   
4.
Denmark has a long tradition of monitoring the aquatic environment. Previous monitoring has mainly focused on loss of nutrients and subsequent impacts on the biological structure in lakes and coastal areas. However, as part of the third Action Plan for the Aquatic Environment more emphasis has been put on stream ecology. The present paper describes background, strategy and content of the new NOVANA stream programme, which will run for the period 2004–2009. The new programme will encompass more than 800 stations covering all stream types in Denmark and monitoring will include three biological quality elements (macrophytes, macroinvertebrates and fish) as well as physico-chemical features and hydromorphological elements. In addition, the new programme integrates monitoring of elements both in the stream itself and in the riparian zone. Compliance with important European Commission Directives such as the Water Framework Directive and the Habitat Directive is discussed.  相似文献   
5.
Most of the existing chemicals of high priority have been released into the environment for many years. Risk assessments for existing chemicals are now conducted within the framework of the German Existing Chemicals Program and by the EC Regulation on Existing Substances. The environmental assessment of a chemical involves:
  1. exposure assessment leading to the derivation of a predicted environmental concentration (PEC) of a chemical from releases due to its production, processing, use, and disposal. The calculation of a PEC takes into account the dispersion of a chemical into different environmental compartments, elimination and dilution processes, as well as degradation. Monitoring data are also considered.
  2. effects assessment. Data obtained from acute or long-term toxicity tests are used for extrapolation on environmental conditions. In order to calculate the concentration with expectedly no adverse effect on organisms (Predicted No Effect Concentration, PNEC) the effect values are divided by an assessment factor. This assessment factor depends on the quantity and quality of toxicity data available.
In the last step of the initial risk assessment, the measured or estimated PEC is compared with the PNEC. This “risk characterization” is conducted for each compartment separately (water, sediment, soil, and atmosphere). In case PEC > PNEC an attempt should be made to revise data of exposure and/or effects to conduct a refined risk characterization. In case PEC is again larger than PNEC risk reduction measures have to be considered.  相似文献   
6.
This paper provides the background to this special issue, outlining the extent to which the global atmospheric nitrogen cycle has been modified by human activity and outlining the range of effects. The global total emissions of reduced and oxidized nitrogen, amount to 124 Tg N, and exceed those from natural sources (34 Tg N) by almost a factor of four showing the extent to which anthropogenic activity has taken over the global N cycle. Of the 124 Tg N, 70 Tg N is emitted in the oxidized form, largely as NO and 70% of which results directly from anthropogenic activity. The remaining 54 Tg N is emitted as NH3, (66% anthropogenic). The enhanced nitrogen emissions are associated with a range of local, regional and global issues including, acidification, eutrophication, climate change, human health and tropospheric O3. The paper also places the Global Nitrogen Enrichment (GaNE) research programme in the UK in a wider perspective.  相似文献   
7.
The distribution and impacts of different nitrogen pollutants are inextricably linked. To understand the problem fully, the interactions between the different pollutants need to be taken into account. This is particularly important when it comes to abatement techniques, since measures to reduce emissions of one nitrogen pollutant can often lead to an increase in another. This project represents a step towards greater understanding of these issues by linking together new and existing nitrogen flux models into a larger framework. The modelling framework has been constructed and some of the nitrogen flows between fields, farms and the atmosphere have been modelled for a UK study area for typical farm management scenarios.  相似文献   
8.
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha?1 y?1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of “real worl” treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below 4 mM in rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha?1 y?1 adjusted for ambient deposition (8 kg N ha?1 y?1). The 16 and 64 kg N ha?1 y?1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.  相似文献   
9.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   
10.
Model estimates of NOy and NHx deposition across Britain for 1996 (5 km square resolution) were applied as explanatory variables to account for national-scale, fine-grained changes in plant species composition between 1990 and 1998. Plant species data were recorded from up to 27 fixed plots located within a stratified random sample of 596 1 km2. The response variable was a cover-weighted Ellenberg fertility score for each plot. Analyses were carried out separately for woodlands, semi-natural grasslands and heaths/bogs. Most of the variation in the botanical response variable occurred between plots within squares and so could not be explained by the model deposition data. NHx deposition estimates accounted for significant, but small components of between 1 km2 variation in the change in Ellenberg score in grasslands (5.6%) and heath/bogs (9.8%) but not woodlands. NOy deposition estimates were not significantly associated with vegetation change. Linear models provided the best fit and the slope of the relationship was lower for heath/bogs than grasslands. Further signal attribution at sub-kilometre square scales requires the development of fine-grained models of N deposition that can be generalised across regional sampling domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号