首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   1篇
安全科学   2篇
废物处理   13篇
环保管理   23篇
综合类   1篇
基础理论   26篇
污染及防治   42篇
评价与监测   21篇
社会与环境   3篇
  2023年   5篇
  2022年   7篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2013年   23篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1991年   1篇
  1980年   1篇
  1965年   1篇
排序方式: 共有131条查询结果,搜索用时 526 毫秒
1.
Catalytic activity of spinel ferrite in breaking down toxic dye materials are promising due to their uniqueness. In this study, aluminum-doped copper zinc ferrite, Cu0.4Zn0.6-xAlxFe2O4 (x = 0.0, 0.2, 0.4, 0.6), a catalyst for toxic dye degradation is synthesized through chemical co-precipitation route. The formation of the spinel ferrite catalyst is initially confirmed by Fourier transform infrared spectra, which shows the frequency of metal-oxygen bond vibration at 539 and 427 cm−1 attributed to the tetrahedral and octahedral sites respectively. Higher intensity sharp peak of X-ray diffraction for (311) plane is the evidence for the phase purity and the formation of spinel ferrite. The crystallite size is found to decrease with the increase of Al3+ ion. The surface structure of the obtained particles is investigated using a scanning electron microscope. Analyses of the material's magnetic characteristics using a vibrating sample magnetometer (VSM) revealed that it is, in fact, a soft magnet, as evidenced by the loop of its hysteresis, which is narrow. The catalytic degradation of methylene blue dye under the mechanism of the photo-Fenton process is studied with the obtained spinel ferrites and the result is found to be as high as 96.5%. The process follows pseudo-second order kinetics and the Langmuir isotherm.  相似文献   
2.
Environmental Science and Pollution Research - The carbon soot is formed as a consequence of incomplete combustion of hydrocarbons and organic matter. It causes respiratory diseases like lung...  相似文献   
3.
Effect of various concentrations of humic acid (0.2 to 1%) on thebioavailability of -HCH in vegetative clones of theaquatic fern Marsilea minuta was studied in a staticexperimental bioassay system on different photoperiods. Additionof humic acid showed the reduction in the bioavailability of-HCH in all the photoperiods (72 hr light to 144 hrlight) at the interval of 16 hr light (L) and 8 hr dark (D) inboth aerial and submerged portion as compared to controlindicating its protective role in toxicity.  相似文献   
4.
Traditional knowledge and practices are important in prudent resource use and biodiversity conservation. The implications of modernization and changing lifestyle are discussed in the context of agriculture and resource use, the two sectors in which maximum modernization has occurred. The information was gathered through observations and structured interviews over three years (July 1996 to July 1999) of field work in the western Himalaya. It was observed that forest based subsistence agriculture has given way to the market dependant cash crop cultivation. That apart from loss of genetic diversity, has also resulted in the degradation of forests. The use of wild plants in the day-to-day activities has also declined and dependence on high value market products has increased. Currently, wild plants are used only if no other cheap substitute is available in the market or if the use is economically beneficial to the people. Thus, the knowledge gathered through ages of experience is eroding because of the activities geared for short-term economic benefits which, in long run, may not be sustainable.  相似文献   
5.
Biodiesel provides a feasible solution to the twin crisis of energy security and environmental concerns prevalent today, and it can be extracted from conventional oil crops as well as microalgae. However, lipid productivity in case of microalgae is much higher and has several advantages as compared with crop plants, so it is a better feedstock for biodiesel. In case of Chlorella pyrenoidosa, the heterotrophic cultured cells were found to be better in terms of lipid production, and ultimately biodiesel production, but the bottleneck is that in this mode glucose is used to feed the cells, which amounts to almost 80% of the total cost of biodiesel production. The purpose of this study is to evaluate and highlight the feasibility of using the industrially cheap cane molasses as a carbon source in place of glucose for a large-scale, low-cost lipid production of Chlorella pyrenoidosa. When treated molasses was used as a carbon source instead of glucose, the biomass sharply increases from 0.89 to 1.22 g L–1. On the other hand, the total lipid content increases from 0.27 to 0.66 g g–1. The specific growth rate and yield was higher in treated molasses as compared with that in glucose-supplemented. A mathematical model was also developed based on logistic, Luedeking–Piret, and Luedeking-Piret-like equations. Model predictions were in satisfactory agreement with the measured data, and the mode of lipid production was growth-associated.  相似文献   
6.
Land use in the Chittagong Hill Tracts (CHT) of Bangladesh had undergone changes over the past several centuries. The landscape, which was mostly covered with forest with interspersed shifting cultivation plots until the beginning of the colonial period, has gradually changed into a landscape with a blend of land uses. Overall, the forest area has gradually declined, while the area under shifting cultivation and sedentary agriculture has expanded. The process of the change was multi-directional. National forestry, land use, land taxation, population migration policies, and development activities, such as construction of a hydroelectric dam and roads, played an important role in this process. Shifting cultivation had inflicted little damage on the forest until the beginning of the colonial period. The pace of deforestation accelerated with the nationalization of forests which abolished tribal people's customary use and management rights to the forest, and allowed large-scale commercial logging both legally and illegally. The pace was further intensified by the policy encouraging population migration to CHT and construction of a reservoir on the Karnafuli River. Efforts were made to replace shifting cultivation with more productive types of sedentary agriculture. However, much change could not take place in the absence of secure land rights, supportive trade policies, and the required support services and facilities, including infrastructure. Locationally suitable land use evolved in areas where transportation facilities were available and farmers were granted land title with the necessary extension services and credit facilities. These findings have important policy implications for the promotion of environmentally and economically sound land use in CHT.  相似文献   
7.
This study presents an assessment of the performance of the Community Multiscale Air Quality (CMAQ) photochemical model in forecasting daily PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter) mass concentrations over most of the eastern United States for a 2-yr period from June 14, 2006 to June 13, 2008. Model predictions were compared with filter-based and continuous measurements of PM2.5 mass and species on a seasonal and regional basis. Results indicate an underprediction of PM2.5 mass in spring and summer, resulting from under-predictions in sulfate and total carbon concentrations. During winter, the model overpredicted mass concentrations, mostly at the urban sites in the northeastern United States because of overpredictions in unspeciated PM2.5 (suggesting possible overestimation of primary emissions) and sulfate. A comparison of observed and predicted diurnal profiles of PM2.5 mass at five sites in the domain showed significant discrepancies. Sulfate diurnal profiles agreed in shape across three sites in the southern portion of the domain but differed at two sites in the northern portion of the domain. Predicted organic carbon (OC) profiles were similar in shape to mass, suggesting that discrepancies in mass profiles probably resulted from the underprediction in OC. The diurnal profiles at a highly urbanized site in New York City suggested that the overpredictions at that site might be resulting from overpredictions during the morning and evening hours, displayed as sharp peaks in predicted profiles. An examination of the predicted planetary boundary layer (PBL) heights also showed possible issues in the modeling of PBL.  相似文献   
8.
Abstract

The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President’s Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbonintensity fuels, and increased use of nuclear energy and renewables.

This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier.

Two technologies for storage of the captured CO2 are reviewed—sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies.

This review also includes discussion of possible problems related to deep injection of CO2 . There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring.

Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal seam. These hypotheses provide significant insight into the fundamental chemical, physical, and thermodynamic phenomena that occur during coal seam sequestration of CO2 .  相似文献   
9.
Abstract

In the United States, emission processing models such as Emissions Modeling System-2001 (EMS-2001), Emissions Preprocessor System-Version 2.5 (EPS2.5), and the Sparse Matrix Operator Kernel Emissions (SMOKE) model are currently being used to generate gridded, hourly, speciated emission inputs for urban and regional-scale photochemical models from aggregated pollutant inventories. In this study, two models, EMS-2001 and SMOKE, were applied with their default internal data sets to process a common inventory database for a high ozone (O3) episode over the eastern United States using the Carbon Bond IV (CB4) chemical speciation mechanism. A comparison of the emissions processed by these systems shows differences in all three of the major processing steps performed by the two models (i.e., in temporal allocation, spatial allocation, and chemical speciation). Results from a simulation with a photochemical model using these two sets of emissions indicate differences on the order of ±20 ppb in the predicted 1-hr daily maximum O3 concentrations. It is therefore critical to develop and implement more common and synchronized temporal, spatial, and speciation cross-reference systems such that the processes within each emissions model converge toward reasonably similar results. This would also help to increase confidence in the validity of photochemical grid model results by reducing one aspect of modeling uncertainty.  相似文献   
10.
Sensitized photodechlorination of polychlorinated biphenyl, PCB 138, in three different surfactant solutions was studied. The sensitizer of choice was leuco-methylene blue, which was produced in situ from methylene blue using either triethylamine or sodium borohydride. Three types of surfactants, anionic (SDS), neutral (TWEEN 80), and cationic (CTAB) at different concentrations were investigated. The neutral and cationic surfactants were found to be more effective than anionic. In each case the surfactant concentration was found to play a significant role in the rate of dechlorination. For different sensitized systems (triethylamine or sodium borohydride), a different product distribution and a different pathway of dechlorination was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号