首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
环保管理   1篇
综合类   1篇
基础理论   12篇
污染及防治   3篇
评价与监测   1篇
  2023年   5篇
  2022年   4篇
  2021年   1篇
  2019年   1篇
  2013年   4篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The main objective of this paper is to develop a complete model that fully simulate a biogas-fueled power plant which can be used to supply a rural farm with sufficient electricity. The reactor is fed with animal manure of the farm. The proposed model consists of three main parts; a biogas reactor, a microturbine (MT) coupled to a permanent magnet synchronous generator, and a storage system. The model describes the dynamics of an MT and it is suitable for both steady state and transient simulation and analysis. The volume of biogas output delivered from the Anaerobic Digester depends on the reactor volume, reactor temperature, and animal manure type. The storage system is used to store the excess value of biogas if any. It is composed of two parts: a comparator and a storage tank. The comparator compares the volume of biogas produced by the reactor with that needed to supply the load. An adaptive controller is developed to withstand the system against any transient condition such as suddenly load increase/decrease. The proposed model is implemented for chemical and physical behaviors of the biogas production process, as well as for different variables of MT-generator operations. The model is implemented in Matlab/Simulink environment and tested under different operating conditions in both steady state and transient status to study the impacts of different variables on the system output. The output results prove its applicability and effectiveness under different operating conditions.  相似文献   
2.

Climate change issues are calling for advanced methods to produce materials and fuels in a carbon–neutral and circular way. For instance, biomass pyrolysis has been intensely investigated during the last years. Here we review the pyrolysis of algal and lignocellulosic biomass with focus on pyrolysis products and mechanisms, oil upgrading, combining pyrolysis and anaerobic digestion, economy, and life cycle assessment. Products include oil, gas, and biochar. Upgrading techniques comprise hot vapor filtration, solvent addition, emulsification, esterification and transesterification, hydrotreatment, steam reforming, and the use of supercritical fluids. We examined the economic viability in terms of profitability, internal rate of return, return on investment, carbon removal service, product pricing, and net present value. We also reviewed 20 recent studies of life cycle assessment. We found that the pyrolysis method highly influenced product yield, ranging from 9.07 to 40.59% for oil, from 10.1 to 41.25% for biochar, and from 11.93 to 28.16% for syngas. Feedstock type, pyrolytic temperature, heating rate, and reaction retention time were the main factors controlling the distribution of pyrolysis products. Pyrolysis mechanisms include bond breaking, cracking, polymerization and re-polymerization, and fragmentation. Biochar from residual forestry could sequester 2.74 tons of carbon dioxide equivalent per ton biochar when applied to the soil and has thus the potential to remove 0.2–2.75 gigatons of atmospheric carbon dioxide annually. The generation of biochar and bio-oil from the pyrolysis process is estimated to be economically feasible.

  相似文献   
3.
Ethyl alcohol, acetone, and petroleum ether extracts of three plant species belonging to three different botanical families [Strychnos nux-vomica (Loganiaceae), Euphorbia lathyrus (Euphorbiaceae), and Datura stramonlum (Solanaceae)], a chemical insecticide; profenofos and their combinations were tested against second and fourth instars of Spodoptera littoralis under lab conditions. Results revealed that the ethanol extract of S. nux-vomica was the most effective among all plant extracts, where the corrected mortality% were 92, 81, 58, and 27% to 2nd instar and 89, 74, 34, and 11% to 4th instar at concentrations 0.5, 0.25, 0.125, and 0.0625%, respectively. Calculated LC50's were 0.11, 0.22, and 0.34% to 2nd instar and 0.17, 0.37, and 0.52% to 4th instar for ethanol, petroleum ether, and acetone extracts, respectively. Acetone extracts of all plants were of lower effect. The chemical insecticide profenofos displayed higher efficacy than plant extracts (LC50 = 0.002 and 0.003% for S. littoralis 2nd and 4th larval instars, respectively). The co-toxicity factor reached 76 and 60 when mixing S. nux-vomica + profenofos and D. stramonlum + profenofos at ratio 1:1 against S. littoralis 2nd instar larvae, thus indicating a potentiating effect. While treatment of the 4th instar larvae by the same mixtures resulted in a co-toxicity factor below 20 at all mixing ratios indicating, only, an additive effect against this instar.  相似文献   
4.

Energy derived from fossil fuels contributes significantly to global climate change, accounting for more than 75% of global greenhouse gas emissions and approximately 90% of all carbon dioxide emissions. Alternative energy from renewable sources must be utilized to decarbonize the energy sector. However, the adverse effects of climate change, such as increasing temperatures, extreme winds, rising sea levels, and decreased precipitation, may impact renewable energies. Here we review renewable energies with a focus on costs, the impact of climate on renewable energies, the impact of renewable energies on the environment, economy, and on decarbonization in different countries. We focus on solar, wind, biomass, hydropower, and geothermal energy. We observe that the price of solar photovoltaic energy has declined from $0.417 in 2010 to $0.048/kilowatt-hour in 2021. Similarly, prices have declined by 68% for onshore wind, 60% for offshore wind, 68% for concentrated solar power, and 14% for biomass energy. Wind energy and hydropower production could decrease by as much as 40% in some regions due to climate change, whereas solar energy appears the least impacted energy source. Climate change can also modify biomass productivity, growth, chemical composition, and soil microbial communities. Hydroelectric power plants are the most damaging to the environment; and solar photovoltaics must be carefully installed to reduce their impact. Wind turbines and biomass power plants have a minimal environmental impact; therefore, they should be implemented extensively. Renewable energy sources could decarbonize 90% of the electricity industry by 2050, drastically reducing carbon emissions, and contributing to climate change mitigation. By establishing the zero carbon emission decarbonization concept, the future of renewable energy is promising, with the potential to replace fossil fuel-derived energy and limit global temperature rise to 1.5 °C by 2050.

  相似文献   
5.
The suitability of a 0.5 M HCl solution for extraction of Fe, Mn, Cd, Co, Cu, Pb, and Zn from Nile River sediments was evaluated by comparing its effectiveness with that of conventional acid ammonium oxalate (Tamm's solution) and aqua regia extraction solutions. The present study has shown that although the extraction data indicate that both 0.5 M HCl and acid ammonium oxalate solutions are able to extract heavy metals simultaneously from the adsorbed, organic, and precipitated phases of Nile sediments, the 0.5 M HCl solution is preferred. It provides a rapid, reliable, and inexpensive method of measuring environmentally mobile metal concentrations in the aquatic sediments. From an analytical chemistry point of view, the 0.5 M HCl extracts do not clog the atomizer of the spectrophotometer. Extraction with dilute HCl solution obviates the need to use chemicals, some of which are toxic or not available readily as a high-purity grade. A standard extraction method should be relatively simple, to conduct a routine analysis of large numbers of sediment samples, yet at the same time it should provide sufficient information for assessment of the environmental impact of particulate metals. Therefore, extraction with 0.5 M HCl solution is very suitable for heavy-metal pollution monitoring in the Nile River  相似文献   
6.
This study aims to determine heavy-metal levels in soil from the banks of Lake Nasser, the ability of Tamarix nilotica to accumulate such metals from soil and hence its potential for phytoextraction. Soil and Tamarix samples were collected from the banks of four bights around Lake Nasser and analysed for Fe, Mn, Ca, Mg, Cr, Cu, Ni, Zn, Cd and Pb by atomic absorption spectrometry, whereas Na and K were measured by atomic emission spectrophotometry. Three different methods of extraction were used for the soil samples. Lead, copper and zinc were equally distributed between the exchangeable phase and Fe/Mn oxide-bound form, while other measured metals were mainly present in the Fe/Mn oxide fraction. With the exception of iron, all metals studied showed total concentrations within the geochemical background values. T. nilotica exhibited elevated concentrations of Na (36.2–48.5?mg?g?1) and K (2.74–4.33?mg?g?1) in stems, and relatively high concentrations of Pb, Cd and Co (0.39–1.03?µg?g?1, 0.24–1.3?µg?g?1 and 1.94–5.3?µg?g?1, respectively) are found in plant leaves. Bioaccumulation factors of Na and K (9.3 and 12.63, respectively) were high in T. nilotica stems. While the bioaccumulation of Pb, Cd, Co and Ni (2870.1, 2035.4, 10.5 and 5313.2, respectively) was high in plant leaves, Fe, Mn, Ca and Mg were accumulated relatively equally in plant stems and leaves. T. nilotica was found to secrete high amounts of Na, Ca and K, in addition to small amounts of all accumulated metals except Cd and Cu. These secreted metals appeared as salt crystals (67.5% Na; 25.8% Ca; 5% Mg; 1.5% K and 0.16% trace and minor elements) on the plant surface. The concentrations of all the metals studied in T. nilotica were higher than in the salt crystals. Statistical analysis of the database suggests bioaccumulation of these metals from soil to T. nilotica. This reflects the importance of using T. nilotica as a model in the phytoremediation process as an established environmental clean-up technology.  相似文献   
7.
Environmental Science and Pollution Research - Access to freshwater is narrowed down every day in the world. Many diseases of human beings are related to water supplies contaminated or unpurified....  相似文献   
8.

The exposure to bisphenols and their derivatives was assessed in 33 fish products sold in Turkey using high-performance liquid chromatography-tandem mass spectrometry (LC–MS/MS). BADGE was determined in only four samples at concentrations ranging between 0.06 and 0.22 mg/kg. As the most abundant bisphenol groups, BADGE-hydrolyzed products such as BADGE·H2O and BADGE·2H2O were present in nine and fourteen samples in the range between 0.06–0.16 and 0.06–0.72 mg/kg, respectively. The total concentration of BADGE and hydrolyzed products was below the specific migration limit (SML) value of 9 mg/kg food, which in the European Union stated as tolerable. Chlorinated derivatives of BADGE were detected in fewer samples compared with hydrolyzed ones. BADGE·H2O·HCl was the predominant migrant among chlorinated derivatives and was present in seven samples in a range between 0.02 and 0.06 mg/kg. All other samples contained less than or equal to 0.03 mg/kg of BADGE·HCl and BADGE·2HCl. The sum of these derivatives was lower than the SML value (1 mg/kg) of BADGE chlorohydrins legislated by the European Union. Besides these migrants, the analyzed samples did not contain any BFDGE and 3R-NOGE, which are prohibited in manufacturing food contact materials.

  相似文献   
9.
This study aims to determine heavy-metal levels in soil from the banks of Lake Nasser, the ability of Tamarix nilotica to accumulate such metals from soil and hence its potential for phytoextraction. Soil and Tamarix samples were collected from the banks of four bights around Lake Nasser and analysed for Fe, Mn, Ca, Mg, Cr, Cu, Ni, Zn, Cd and Pb by atomic absorption spectrometry, whereas Na and K were measured by atomic emission spectrophotometry. Three different methods of extraction were used for the soil samples. Lead, copper and zinc were equally distributed between the exchangeable phase and Fe/Mn oxide-bound form, while other measured metals were mainly present in the Fe/Mn oxide fraction. With the exception of iron, all metals studied showed total concentrations within the geochemical background values. T. nilotica exhibited elevated concentrations of Na (36.2-48.5 mg g-1) and K (2.74-4.33 mg g-1) in stems, and relatively high concentrations of Pb, Cd and Co (0.39-1.03 µg g-1, 0.24-1.3 µg g-1 and 1.94-5.3 µg g-1, respectively) are found in plant leaves. Bioaccumulation factors of Na and K (9.3 and 12.63, respectively) were high in T. nilotica stems. While the bioaccumulation of Pb, Cd, Co and Ni (2870.1, 2035.4, 10.5 and 5313.2, respectively) was high in plant leaves, Fe, Mn, Ca and Mg were accumulated relatively equally in plant stems and leaves. T. nilotica was found to secrete high amounts of Na, Ca and K, in addition to small amounts of all accumulated metals except Cd and Cu. These secreted metals appeared as salt crystals (67.5% Na; 25.8% Ca; 5% Mg; 1.5% K and 0.16% trace and minor elements) on the plant surface. The concentrations of all the metals studied in T. nilotica were higher than in the salt crystals. Statistical analysis of the database suggests bioaccumulation of these metals from soil to T. nilotica. This reflects the importance of using T. nilotica as a model in the phytoremediation process as an established environmental clean-up technology.  相似文献   
10.
To know the interrelationship between some metals in different ecosystem components (water, sediment, aquatic plant and fish), many samples from these components were collected from four bights at the Nasser Lake, Egypt, and analyzed for Fe, Mn, Zn, Ca, Mg, Pb, Cd, Ni, Co, Cu and Cr using atomic absorption spectrophotometer. Different distribution factors (bioaccumulation factor – BF, discrimination factor – DF and enrichment factor – EF) were applied on the results of analysis. Data showed that the relatively high concentration of measured metals in water samples are derived from fish farms, and discharge of tourism and trade ships. Applying single leaching sequential technique on sediment samples, using different extracting solutions, revealed a strong ability of trace metals to adsorb on or co-precipitate with amorphous Fe/Mn oxides. High concentrations of Fe, Mn, Co and Ni were measured in the intestine while high Cd and Cr concentrations were recorded in the stomach in both Tilapia (nilotica and galilea). Tilapia galilea accumulated high Pb, Cu and Zn concentrations in their stomach, while in nilotica high concentrations of Pb, Cu and Zn were measured in the intestine, liver and muscles, respectively. Myriophyllum spicatum (an aquatic plant) in the lake recorded high concentrations of Fe, Mn and Zn. Bioaccumulation factors of studied elements in the different bights components indicate that the elevated concentration of measured elements in the aquatic plant and Tilapia (nilotica and galilea) are derived from water, reflecting the increase of human activities in Nasser Lake in recent years. However, the present study concluded that all the elements studied were still below the natural back-ground levels, except Zn and Cu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号