首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
环保管理   3篇
基础理论   5篇
  2014年   1篇
  2003年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Non‐native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non‐native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non‐native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non‐native species; help disentangle which aspects of scientific debates about non‐native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio‐economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No‐Nativas  相似文献   
2.
The proposed restoration of an abandoned hydroelectric dam on the Quinebaug River, Connecticut, is studied using energy analysis. The analysis considers the effects of alternative minimum flow releases, ranging from 0 to 34 cubic meters per second (cms), on the total energy flow of the affected system. The principal system components affected by differing minimum flows are hydroelectric power generation, aquatic habitat, and gross aquatic ecosystem productivity.The minimum flow alternative resulting in the highest annual energy flow in the affected system is considered optimal. From this purely analytical point of view, the optimum minimum flow is 0 cms, due to the short length and low productivity of the regulated reach, and the lack of floodplain interactions.Simulations of longer and more productive river reaches were conducted. For very short, unproductive reaches, in the absence of a floodplain, the contribution of aquatic community productivity to total system energy flow is negligible compared to hydroelectric generation. Optimum minimum flows are higher for longer and more productive reaches. For such cases the operation of hydroelectric dams could reduce total system energy flow because the energy supplied by hydroelectric generation may be offset by losses in aquatic productivity due to diminished riverine habitat.  相似文献   
3.
The salt marsh ecosystem at North Inlet, South Carolina, USA consistently exported dissolved inorganic nitrogen via tidal exchange with the coastal Atlantic Ocean. Concentrations centrations of NH 4 + and NO 3 - +NO 2 - displayed distinct tidal patterns with rising values during ebb flow. These patterns suggest the importance of biogeochemical processes in the flux of material from the salt marsh. NH 4 + export peaked during the summer (15 to 20 mg m-2 tide-1) during a net balance of tidal water exchange. Remineralization of NH 4 + within the salt marsh system appears to be contributing to the estimated annual net export of bout 4.7 g NH 4 + -N m-2 yr-1. NO 3 - +NO 2 - exports were higher in the fall and winter of 1979 (2 to 4 mg N m-2 tide-1). The winter export coincided with a considerable net export of water with no distinctive concentration patterns, suggesting a simple advective export. However, the fall peak of NO 3 - +NO 2 - export occurred during a period of net water balance in tidal exchange and an insignificant freshwater input from the western, forested boundary. During the summer and fall, tidal concentration patterns were particularly apparent, suggesting that nitrification within the salt marsh system was contributing to the estimated annual net export of ca 0.6 g NO 3 - +NO 2 - -N m-2 yr-1.Contribution No. 637 from the Belle W. Baruch Institute of Marine Biology and Coastal Research  相似文献   
4.
There is abundant evidence that many factors can influence the toxicity of a particular pollutant including environmental fluctuations, season of the year, stage in life cycle, size, and sex. All of these factors should be assessed before making a judgment of the effect on natural populations. Such an assessment can be conceptualized using a simple population model through whichcontrol gates operate as functions of 1). the direct self-maintainance feedback from existing adult population biomass and 2). the recruitment of new individuals due to the maturation of larvae. By extracting general principles of organismic response to pollutants it is possible to incorporate the information into large-scale ecosystem models which would serve as working tools for answering environmental decision-making problems.  相似文献   
5.
The North Inlet Marsh-Estuarine System Model (NIMES) is a 19-compartment real-time deterministic ecosystem simulation model of intrasystem carbon flow and exchange between an estuary and adjacent coastal water. A complete sensitivity analysis of this model with regard to POM, DOM and nekton annual exchange and annual system net productivity was completed and the functional relationship between these system behaviors and the perturbed parameters were determined by regression techniques. Simulated POM annual exchange between the estuary and the sea was largely controlled by offshore POM concentration, water column respiration and the gross productivity of the marsh and water column flora. Simulated DOM annual estuarine-oceanic exchange was most sensitive to perturbations in the gross productivity and biomass changes in marsh flora and water column microbial DOM uptake. Simulated nekton exchange reflected a sensitivity to migratory behavior and subtidal benthic biomass changes. System annual net productivity as simulated by the model showed a high sensitivity to all model processes which affected component primary production and respiration. From this sensitivity analysis, a scheme is developed to evaluate research needs for further model development for the North Inlet ecosystem.  相似文献   
6.
ABSTRACT: Coastal watersheds in the southeastern United States are rapidly changing due to population growth and attendant increases in residential development, industry, and tourism related commerce. This research examined spatial and temporal patterns of nutrient concentrations in streams from 10 small watersheds (< 4 km2) that drain into Murrells Inlet (impacted) and North Inlet (pristine), two high salinity estuaries along the South Carolina coast. Monthly grab samples were collected during baseflow during 1999 and analyzed for total and dissolved inorganic and organic forms of nitrogen and phosphorus. Data were grouped into forested wetland creeks (representing predevelopment reference sites), urban creeks, and urban ponds. DON and NH4 concentrations were greater in forested streams than in urban streams. NO3 and TP concentrations were greatest in urban streams. Seasonally, concentrations were highest during summer for TN, NH4, DON, and TP, while NO3 concentrations were greatest during winter. Nutrient ratios clearly highlighted the reduction in organic nitrogen due to coastal development. Multiple regression models to predict instream nutrient concentrations from land use in Murrells Inlet suggest that effects are not significant (small r2). The findings indicate that broad land use/land cover classes cannot be used to predict nutrient concentrations in streams in the very small watersheds in our study areas.  相似文献   
7.
A first-stage verified model of carbon/energy flux through the North Inlet (South Carolina) marsh—estuarine ecosystem is presented. The time series output for model compartments and overall septem carbon flow are compared with observed data collected over the past five to ten years. Results indicate that the model is stable and can broadly reproduce some of the major trends of a salt marsh—estuarine system. Further avenues of research are suggested.  相似文献   
8.
The effects of a coastal power plant on an outer estuarine bay ecosystem on the west coast of Florida were evaluated with measurements and an ecological model. Field measurements of community metabolism and biomass were taken from the thermally affected bay and from similar control bays. Model simulations were used to help understand these observations in terms of ecosystem structure and functioning.In the outer discharge bay the direct impact of the thermal plume was diluted and spread overlarge areas. The ecosystem developed structure and functions with lower biomass than in the control bays but with slightly faster rates of organic turnover. The productive turnover time of producer biomass during the summer was about 5 days in the discharge bay and about 6 days in the control bays. Power plant influence on total community metabolism was small with less than 10% difference in annual averages between the discharge and control bays (5.22 and 5.58 g O2/m2/day). The selection for faster metabolic turnover rates in the discharge by was evidenced by a dominance of plankton metabolism over benthic metabolism. The annual average gross planktonic production was around 3 g O2/m2/day in the discharge bay and around 2 g/m2/day in the control bays.In the model, temperature served as a stimulant to both productivity and respiration. When the isolated effects of increased temperature were simulated the model responded with lower producer biomass and faster rates of organic turnover, as was found in field measurements. These simulations also showed increased nutrient recycling and indicated patterns of temperature-induced migrations. Since power plant operation affected water exchange in the bays, several levels of total water exchange were simulated. These simulations indicated the importance of water exchange as a stabilizing factor, especially for sensitive compartments with rapid turnover rates (i.e. plankton and phosphorus stocks). Simulations of the effects of future power plant units on the bay ecosystem showed no large changes in total metabolism but indicated larger effects of plankton entrainment mortality and temperature-induced migrations of larger organisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号