首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2017年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Sulfide-containing mill wastes of the Komsomolsk ore processing plant situated in the Kemerovo region (Russia) were examined in 2013–2015. Multipurpose studies of the mine tailings determined the composition of waste, pore water, mine drainages, and affected groundwater. Electrical resistivity tomography was used to trace the geoelectric zoning of the waste samples. Layers with low resistivity indicated areas with pore spaces filled with highly mineralized solutions with Fe, Cu, Zn, Cd, As, and Sb at total concentrations of up to 50 g/L. Anomalous zones can be specified as ‘geochemical barriers’ – specific layers where the mobility of the elements is reduced due to pH conditions, redox potential, and Fe(III) hydroxide precipitation. The zones of increased conductivity in oxidized mine tailings indicated local areas with high acid production potential and coexisting acidic pore solution. In non-oxidized tailings, high conductivity of the mineral skeleton was observed. There was a migration of drainage outside the tailings, its direction monitored by geophysical data. Chemical analysis confirmed that the concentrations of As in groundwater samples were higher than the maximum permissible concentration.  相似文献   
2.
Sulfide-bearing mill wastes are sources of high concentrations of acid, soluble metals, Sb, and As. Contents of Cu, Zn, Fe, Pb, Cd, As, and Sb in wastes of the Belovo Zn-processing and the Karabash mineral-processing plants (Russia) exceed the average content in the upper continental crust and background soils. High-dissolved metal and As concentrations are found in acid drainages, which form as a result of interaction between sulfide wastes and water. Monitoring research using geochemical and geophysical methods was performed to evaluate the contamination of the surrounding area (water and bottom sediments in the contaminated rivers and snow cover). Zones of geochemical anomalies were identified where the concentrations of Fe, Cu, Zn, Cd, Pb, and As are 2–3 orders of magnitude higher than in drinking water standards (for rivers) and background levels (for snow). The use of geophysical methods allowed us to prove penetration of drainage solutions into the groundwaters. The total environmental damage caused by the pollution of water and land resources in the Belovo Zn-processing plant waste disposal area amounted to $156 million at the time of 2011, and could reach $480 million by 2030, if steps are not taken in recycling and remediation of disturbed areas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号