首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   3篇
评价与监测   1篇
  2009年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Fractionation and elemental association of Zn, Cd, and Pb in soils near Zn mining areas were studied using a continuous-flow sequential extraction approach. The recently developed sequential extraction procedure not only gave fractional distribution data for evaluation of the mobility or potential environmental impact of the metals, but also the extraction profiles (extractograms) which were used for study of elemental association. In addition, the elemental atomic ratio plot extractogram can be used to demonstrate the degree of anthropogenic contamination. Seventy-nine soil samples were collected in the vicinity of a Zn mine and were fractionated into 4 phases i.e. exchangeable (F1), acid soluble (F2), reducible (F3) and oxidizable (F4) phases. Most samples were contaminated with Zn, Cd and Pb. The reducible phase is the most abundant fraction for Zn and Pb (>50%) while Cd is concentrated in the first 3 extraction steps. The distribution patterns of Cd were obviously affected by soil pH. 55% of Cd appears predominantly in the F1 fraction for acidic soils while in neutral and alkaline soils, it was mostly (70%) found in the F2 + F3 fractions. The extractograms obtained from the continuous-flow extraction system revealed close association between Zn, Cd, Pb and Fe in the acid soluble phase, Cd-Pb and Zn-Fe in the reducible phase for contaminated soils. A correlation study of the 3 metals using a correlation coefficient was also performed to compare the results with the elemental association revealed by the extractograms. Atomic ratio plot extractograms of Zn/Fe, Cd/Fe and Pb/Fe in the reducible phase, where contaminated metals are predominant, can be used to evaluate the degree of anthropogenic contamination. From the elemental atomic ratio plot, it is obvious that the contaminants Cd and Pb are mostly adsorbed on the surface of Fe oxides. Zn, which is present in an approximately 1 ratio 1 ratio with Fe in contaminated soils, does not show a similar trend to that found for Cd and Pb.  相似文献   
2.
A reconnaissance soil geochemical and concomitant plant survey based on 318 soil (0-15 cm) and 122 plant samples was used for the assessment of heavy metal pollution of agricultural soils and crops of Thailand. Arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) were determined in soils using aqua regia digestion, and in plants using nitric acid digestion. Organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) were determined on the soil samples using appropriate procedures. Results indicated that concentrations of heavy metals varied widely among the different regions of Thailand. Regression analysis between the concentrations of metals in soil (aqua regia extractable) and edible plant parts indicated a small but positive relationship for Cd in all the plants sampled in the survey (R2 = 0.081, p < 0.001). There was also a positive relationship between soil and plant Cd concentrations in rice (R2 = 0.242, p < 0.010), and negative relationships for Zn in rice (R2 = 0.385, p < 0.001), and Cu (R2 = 0.355, p < 0.001) and Zn (R2 = 0.122, p < 0.026) in glutinous rice. Principal component analysis of the soil data suggested that concentrations of As, Co, Cr, Cu, Hg, Ni and Pb were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus, the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. On the other hand, Cd and Zn were strongly correlated with organic matter and concentrations of available and aqua regia extractable P. This is attributed to input of contaminants in agricultural fertilisers and soil amendments (e.g. manures, composts).  相似文献   
3.
Prolonged consumption of rice containing elevated cadmium (Cd) levels is a significant health issue particularly in subsistence communities that are dependent on rice produced on-farm. This situation is further exacerbated in areas of known non-ferrous mineralization adjacent to rice-based agricultural systems where the opportunity for contamination of rice and its eventual entry into the food chain is high. In the current study, an assessment of the degree of soil Cd and Zn contamination and associated rice grain Cd contamination downstream of an actively mined zone of Zn mineralization in western Thailand was undertaken. Total soil Cd and Zn concentrations in the rice-based agricultural system investigated ranged from 0.5 to 284 mg kg−1 and 100 to 8036 mg kg−1, respectively. Further, the results indicate that the contamination is associated with suspended sediment transported to fields via the irrigation supply. Consequently, the spatial distribution of Cd and Zn is directly related to a field’s proximity to primary outlets from in-field irrigation channels and inter-field irrigation flows with 60–100% of the Cd and Zn loading associated with the first three fields in irrigation sequence. Rice grain Cd concentrations in the 524 fields sampled, ranged from 0.05 to 7.7 mg kg−1. Over 90% of the rice grain samples collected contained Cd at concentrations exceeding the Codex Committee on Food Additives and Contaminants (CCFAC) draft Maximum Permissible Level for rice grain of 0.2 mg Cd kg−1. In addition, as a function of demographic group, estimated Weekly Intake (WI) values ranged from 20 to 82 μg Cd per kg Body. This poses a significant public health risk to local communities. The results of this study suggest that an irrigation sequence-based field classification technique in combination with strategic soil and rice grain sampling and the estimation of WI values via rice intake alone may be a useful decision support tool to rapidly evaluate potential public health risks in irrigated rice-based agricultural systems receiving Cd contaminated irrigation water. In addition, the proposed technique will facilitate the cost effective strategic targeting of detailed epidemiological studies thus focusing resources to specific ‘high risk’ areas.  相似文献   
4.
Research undertaken over the last 40 years has identified the irrefutable relationship between the long-term consumption of cadmium (Cd)-contaminated rice and human Cd disease. In order to protect public health and livelihood security, the ability to accurately and rapidly determine spatial Cd contamination is of high priority. During 2001–2004, a General Linear Regression Model Irr-Cad was developed to predict the spatial distribution of soil Cd in a Cd/Zn co-contaminated cascading irrigated rice-based system in Mae Sot District, Tak Province, Thailand (Longitude E 98°59′–E 98°63′ and Latitude N 16°67′–16°66′). The results indicate that Irr-Cad accounted for 98% of the variance in mean Field Order total soil Cd. Preliminary validation indicated that Irr-Cad ‘predicted’ mean Field Order total soil Cd, was significantly (p < 0.001) correlated (R 2 = 0.92) with ‘observed’ mean Field Order total soil Cd values. Field Order is determined by a given field's proximity to primary outlets from in-field irrigation channels and subsequent inter-field irrigation flows. This in turn determines Field Order in Irrigation Sequence (Field OrderIS). Mean Field Order total soil Cd represents the mean total soil Cd (aqua regia-digested) for a given Field OrderIS. In 2004–2005, Irr-Cad was utilized to evaluate the spatial distribution of total soil Cd in a ‘high-risk’ area of Mae Sot District. Secondary validation on six randomly selected field groups verified that Irr-Cad predicted mean Field Order total soil Cd and was significantly (p < 0.001) correlated with the observed mean Field Order total soil Cd with R 2 values ranging from 0.89 to 0.97. The practical applicability of Irr-Cad is in its minimal input requirements, namely the classification of fields in terms of Field OrderIS, strategic sampling of all primary fields and laboratory based determination of total soil Cd (T-CdP) and the use of a weighed coefficient for Cd (CoeffW). The use of primary fields as the basis for Irr-Cad is also an important practical consideration due to their inherent ease of identification and vital role in the classification of fields in terms of Field OrderIS. The inclusion of mean field order soil pH (1:5water) to the Irr-Cad model accounted for over 79% of the variation in mean Field Order bio-available (DTPA (diethylenetriaminepentaacetic acid)-extractable) soil Cd. Rice is the staple food of countries of the Greater Mekong Sub-region (includes Vietnam, Myanmar, Lao PDR, Thailand and Yunnan Province, China). These countries also have actively and historically mined Zn, Pb, and Cu deposits where Cd is likely to be a potential hazard if un-controlled discharge/runoff enters areas of rice cultivation. As such, it is envisaged that the Irr-Cad model could be applied for Cd hazard assessment and effectively form the basis of intervention options and policy decisions to protect public health, livelihoods, and export security.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号