首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   1篇
综合类   3篇
基础理论   1篇
污染及防治   1篇
  2020年   1篇
  2019年   1篇
  2012年   1篇
  1982年   1篇
  1981年   1篇
  1962年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Environmental Chemistry Letters - Swine production generates large volumes of wastewater, rich in organic matter, nutrients and pathogens. Electrodisinfection is used to remove organic matter and...  相似文献   
2.
3.
4.
Abstract

Heavy metals can be highly toxic depending on the dose and the chemical form. In this context, sensing devices such as nanobiosensors have been presented as a promising tool to monitor contaminants at micro and nanoscale. In this work, cantilever nanobiosensors with phosphatase alkaline were developed and applied to detect heavy metals (Pb, Ni, Cd, Zn, Co, and Al) in river water. The nanobiosensor surface was functionalized by the self-assembled monolayers (SAM) technique using 16-mercaptohexadecanoic acid, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N- hydroxysuccinimide (NHS), and phosphatase alkaline enzyme. The sensing layer deposited on the cantilever surface presented a uniform morphology, at nanoscale, with 80?nm of thickness. The nanobiosensor showed a detection limit in the ppb range and high sensitivity, with a stability of fifteen days. The developed cantilever nanobiosensor is a simple tool, suitable for the direct detection of contaminants in river water.  相似文献   
5.
Application of biochars to soils may stabilize soil organic matter and sequester carbon (C). The objectives of our research were to study in vitro C mineralization kinetics of various biochars in comparison with wheat straw in three soils and to study their contribution to C stabilization. Three soils (Oxisol, Alfisol topsoil, and Alfisol subsoil) were incubated at 25°C with wheat straw, charcoal, hydrothermal carbonization coal (HTC), low-temperature conversion coal (LTC), and a control (natural organic matter). Carbon mineralization was analyzed by alkali absorption of CO released at regular intervals over 365 d. Soil samples taken after 5 and 365 d of incubation were analyzed for soluble organic C and inorganic N. Chemical characterization of biochars and straw for C and N bonds was performed with Fourier transformation spectroscopy and with the N fractionation method, respectively. The LTC treatment contained more N in the heterocyclic-bound N fraction as compared with the biochars and straw. Charcoal was highly carbonized when compared with the HTC and LTC. The results show higher C mineralization and a lower half-life of straw-C compared with biochars. Among biochars, HTC showed some C mineralization when compared with charcoal and LTC over 365 d. Carbon mineralization rates were different in the three soils. The half-life of charcoal-C was higher in the Oxisol than in the Alfisol topsoil and subsoil, possibly due to high Fe-oxides in the Oxisol. The LTC-C had a higher half-life, possibly due to N unavailability. We conclude that biochar stabilization can be influenced by soil type.  相似文献   
6.
We report on beams of aligned Lithium nuclei as a tool in nuclear physics. The production of these beams is described. Their usefulness to obtain information on the deformation of7Li is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号