首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
安全科学   4篇
综合类   3篇
基础理论   2篇
污染及防治   4篇
  2017年   1篇
  2015年   3篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  1993年   1篇
  1991年   1篇
  1961年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The occurrence of oocytes in the testis (testis-ova) of several fish species is often associated with exposure of estrogenic chemicals. However, induction mechanisms of the testis-ova remain to be elucidated. To develop marker genes for detecting testis-ova in the testis, adult male medaka were exposed to nominal concentration of 100 ng L−1 of 17α-ethinylestradiol (EE2) for 3-5 weeks, and 800 ng estradiol benzoate (EB) for 3 weeks (experiment I), and a measured concentration of 20 ng L−1 EE2 for 1-6 weeks (experiment II). Histological analysis was performed for the testis, and microarray analyses were performed for the testis, liver and brain. Microarray analysis in the estrogen-exposed medaka liver showed vitellogenin and choriogenin as estrogen responsive genes. Testis-ova were induced in the testis after 4 weeks of exposure to 100 ng L−1 EE2, 3 weeks of exposure to 800 ng EB, and 6 weeks of exposure to 20 ng L−1 EE2. Microarray analysis of estrogen-exposed testes revealed up-regulation of genes related to zona pellucida (ZP) and the oocytes marker gene, 42Sp50. Using quantitative RT-PCR we confirmed that Zpc5 gene can be used as a marker for the detection of testis-ova in male medaka.  相似文献   
2.
The effect of silica sand on the diffusion of sodium ions in mixtures of montmorillonite and silica sand was studied by measuring the apparent diffusion coefficients, activation energies for diffusion, and the basal spacing of the mixed samples. These diffusion experiments suggest that the apparent diffusion coefficients of sodium ions in the mixed samples were almost the same as those of pure montmorillonite samples having the same partial dry densities of montmorillonite. The activation energy dependence for diffusion of sodium ions on the partial dry density was different between the mixed samples and the pure montmorillonite samples. The activation energy increased by adding silica sand at the partial dry density of 1.0 Mg m(-3), and decreased by adding silica sand at the partial dry densities higher than 1.2 Mg m(-3). A change in the XRD profile was observed after adding silica sand at the partial dry density of 1.6 Mg m(-3). Here, a three-water-layer hydrate state of montmorillonite was found in the mixed sample whereas only a two-water-layer hydrate state was observed in the pure montmorillonite sample. These experimental results suggest that silica sand changed the montmorillonite microstructure in the mixed samples, which then altered the sodium-ion diffusion process.  相似文献   
3.
Objective: The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions.

Methods: The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.S. New Car Assessment Program (U.S.-NCAP) and 3 extra per model with high-intensity braking. The 4 scenarios were no precollision system (no PCS), forward collision warning (FCW), FCW with prebraking assist (FCW+PBA), and FCW and PBA with autonomous precrash braking (FCW + PBA + PB). The baseline ΔV was 17, 34, and 56.4 kph for median, severe, and U.S.-NCAP scenarios, respectively, and were based on crash reconstructions from NASS/CDS. Pulses were then developed based on the assumed precrash systems equipped. Restraint properties and the generic pulse used were based on literature.

Results: In median crash severity cases, little to no risk (<10% risk for Abbreviated injury Scale [AIS] 3+) was found for all injury measures for both models. In the severe set of cases, little to no risk for AIS 3+ injury was also found for all injury measures. In NCAP cases, highest risk was typically found with No PCS and lowest with FCW + PBA + PB. In the higher intensity braking cases (1.0–1.4 g), head injury criterion (HIC), brain injury criterion (BrIC), and chest deflection injury measures increased with increased braking intensity. All other measures for these cases tended to decrease. The ATD also predicted and trended similar to the human body models predictions for both the median, severe, and NCAP cases. Forward excursion for both models decreased across median, severe, and NCAP cases and diverged from each other in cases above 1.0 g of braking intensity.

Conclusions: The addition of precrash systems simulated through reduced precrash speeds caused reductions in some injury criteria, whereas others (chest deflection, HIC, and BrIC) increased due to a modified occupant position. The human model and ATD models trended similarly in nearly all cases with greater risk indicated in the human model. These results suggest the need for integrated safety systems that have restraints that optimize the occupant's position during precrash braking and prior to impact.  相似文献   

4.

Purpose  

Existing land-use regression (LUR) models use land use/cover, population, and traffic information to predict long-term intra-urban variation of air pollution. These models are limited to explaining spatial variation of air pollutants, and few of them are capable of addressing temporal variability. This article proposes a space–time LUR model at a regional scale by incorporating aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS).  相似文献   
5.
It is required to replace the aluminum fluoride coating, which is a popular lubricant for aluminum alloy cold forging in Japan, with environmentally friendly lubricants, because the aluminum fluoride coating has high environmental risks and needs much expense. Evaluations of lubrication performance are necessary before lubricant replacement. The authors proposed new friction test based on combined forward spline-backward can extrusion. It can realize large surface expansion, which is a characteristic of aluminum cold forging. In the present paper, a double-layer-type environmentally friendly solid lubricant film and the aluminum fluoride coating were applied to a precipitation hardened aluminum alloy. The lubrication performance was evaluated by the friction test. The double-layer-type lubricant showed superior performance enough for the replacement. The effect of surface treatment applied to workpiece on the lubrication performance was also investigated. The surface asperity generated by a wet-blasting showed high pickup resistance and low friction.  相似文献   
6.
We examined quantitative changes in the metabolism of the coral Galaxea fascicularis caused by increases in both hydrogen peroxide (H2O2) concentration and seawater temperature. Seawater temperatures were maintained at 27 or 31°C in a well-controlled incubation chamber, and three levels of H2O2 concentration (0, 0.3, 3.0 μM) were used in experimental treatments. Gross primary production, calcification rates and respiration rates were all affected by increased H2O2 concentrations and high seawater temperatures. Individual treatments of high H2O2 or elevated seawater temperature alone caused significant declines in coral photosynthesis and calcification rates within the 3-day incubation period. The synergistic effect of high H2O2 combined with high seawater temperature resulted in a 134% increase in respiration rates, which surpassed the effect of either H2O2 or high seawater temperature alone. Our results suggest that both high H2O2 concentrations and elevated temperatures in seawater can strongly affect coral metabolism; however, these effects cannot be estimated by simply summing the effects of individual stress parameters.  相似文献   
7.
Kitada Y  Kawahata H  Suzuki A  Oomori T 《Chemosphere》2008,71(11):2082-2090
To investigate the deteriorating health of coral reefs in Okinawa, Japan, natural sediment samples were analyzed for diuron, Irgarol 1051, chlorpyrifos, and bisphenol A (BPA) which are hazardous to corals. Samples were analyzed by solid-phase extraction (SPE) followed by high-performance liquid chromatography with tandem mass spectrometry (LC–MS–MS). Although diuron and chlorpyrifos usage is only well recorded for farms and not for cities, these chemicals were detected in both rural and urban areas. Additionally, diuron concentration in urban areas was in some cases higher than in rural areas, which might be caused by greater consumption of these chemicals in home gardens in city areas. Irgarol 1051 was detected in downstream river areas, which are situated far from the source sites such as pier or fishery harbor (0.6–3.2 km). This result suggested that Irgarol 1051 could be transported from the river mouths to the sampling sites during flood tides. High BPA concentrations were associated with urban areas (<1.2–22.0 μg kg−1), while low concentrations were associated with rural areas (nd–6.8 μg kg−1). The river sediments under study are delivered to coral reefs in large quantity through runoff caused by typhoons and other heavy rains. The highly hazardous chemicals are carried into coral reefs on these sediments. Therefore, these hazardous chemical substances may already be influencing the coral reefs.  相似文献   
8.
Objective: Lane changes with the intention to overtake the vehicle in front are especially challenging scenarios for forward collision warning (FCW) designs. These overtaking maneuvers can occur at high relative vehicle speeds and often involve no brake and/or turn signal application. Therefore, overtaking presents the potential of erroneously triggering the FCW. A better understanding of driver behavior during lane change events can improve designs of this human–machine interface and increase driver acceptance of FCW. The objective of this study was to aid FCW design by characterizing driver behavior during lane change events using naturalistic driving study data.

Methods: The analysis was based on data from the 100-Car Naturalistic Driving Study, collected by the Virginia Tech Transportation Institute. The 100-Car study contains approximately 1.2 million vehicle miles of driving and 43,000 h of data collected from 108 primary drivers. In order to identify overtaking maneuvers from a large sample of driving data, an algorithm to automatically identify overtaking events was developed. The lead vehicle and minimum time to collision (TTC) at the start of lane change events was identified using radar processing techniques developed in a previous study. The lane change identification algorithm was validated against video analysis, which manually identified 1,425 lane change events from approximately 126 full trips.

Results: Forty-five drivers with valid time series data were selected from the 100-Car study. From the sample of drivers, our algorithm identified 326,238 lane change events. A total of 90,639 lane change events were found to involve a closing lead vehicle. Lane change events were evenly distributed between left side and right side lane changes. The characterization of lane change frequency and minimum TTC was divided into 10 mph speed bins for vehicle travel speeds between 10 and 90 mph. For all lane change events with a closing lead vehicle, the results showed that drivers change lanes most frequently in the 40–50 mph speed range. Minimum TTC was found to increase with travel speed. The variability in minimum TTC between drivers also increased with travel speed.

Conclusions: This study developed and validated an algorithm to detect lane change events in the 100-Car Naturalistic Driving Study and characterized lane change events in the database. The characterization of driver behavior in lane change events showed that driver lane change frequency and minimum TTC vary with travel speed. The characterization of overtaking maneuvers from this study will aid in improving the overall effectiveness of FCW systems by providing active safety system designers with further understanding of driver action in overtaking maneuvers, thereby increasing system warning accuracy, reducing erroneous warnings, and improving driver acceptance.  相似文献   
9.
10.
Objectives: The U.S. New Car Assessment Program (NCAP) now tests for forward collision warning (FCW) and lane departure warning (LDW). The design of these warnings differs greatly between vehicles and can result in different real-world field performance in preventing or mitigating the effects of collisions. The objective of this study was to compare the expected number of crashes and injured drivers that could be prevented if all vehicles in the fleet were equipped with the FCW and LDW systems tested under the U.S. NCAP.

Methods: To predict the potential crashes and serious injury that could be prevented, our approach was to computationally model the U.S. crash population. The models simulated all rear-end and single-vehicle road departure collisions that occurred in a nationally representative crash database (NASS-CDS). A sample of 478 single-vehicle crashes from NASS-CDS 2012 was the basis for 24,822 simulations for LDW. A sample of 1,042 rear-end collisions from NASS-CDS years 1997–2013 was the basis for 7,616 simulations for FCW. For each crash, 2 simulations were performed: (1) without the system present and (2) with the system present. Models of each production safety system were based on 54 model year 2010–2014 vehicles that were evaluated under the NCAP confirmation procedure for LDW and/or FCW. NCAP performed 40 LDW and 45 FCW tests of these vehicles.

Results: The design of the FCW systems had a dramatic impact on their potential to prevent crashes and injuries. Between 0 and 67% of crashes and 2 and 69% of moderately to fatally injured drivers in rear-end impacts could have been prevented if all vehicles were equipped with the FCW systems. Earlier warning times resulted in increased benefits. The largest effect on benefits, however, was the lower operating speed threshold of the systems. Systems that only operated at speeds above 20 mph were less than half as effective as those that operated above 5 mph with similar warning times. The production LDW systems could have prevented between 11 and 23% of drift-out-of-lane crashes and 13 and 22% of seriously to fatally injured drivers. A majority of the tested LDW systems delivered warnings near the point when the vehicle first touched the lane line, leading to similar benefits. Minimum operating speed also greatly affected LDW effectiveness.

Conclusions: The results of this study show that the expected field performance of FCW and LDW systems are highly dependent on the design and system limitations. Systems that delivered warnings earlier and operated at lower speeds may prevent far more crashes and injuries than systems that warn late and operate only at high speeds. These results suggest that future FCW and LDW evaluation should prioritize early warnings and full-speed range operation. A limitation of this study is that additional crash avoidance features that may also mitigate collisions—for example, brake assist, automated braking, or lane-keeping assistance—were not evaluated during the NCAP tests or in our benefits models. The potential additional mitigating effects of these systems were not quantified in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号