首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
安全科学   3篇
废物处理   1篇
环保管理   11篇
综合类   14篇
基础理论   13篇
污染及防治   11篇
评价与监测   1篇
社会与环境   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2006年   5篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有55条查询结果,搜索用时 46 毫秒
1.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   
2.
Abstract

Standardized tests were applied to aromatic and polar fractions of sediment extracts to determine whether polar constituents or oxidative degradation products contributed significantly to the toxicity of sediments oiled by the Exxon Valdez spill. Intertidal sediment and pore-water samples were collected in September 1990 from two heavily oiled sites and an unoiled site in Prince William Sound (PWS). Methylene chloride extracts from these samples were fractionated by liquid chromatography into aliphatic, aromatic and polar fractions, and the aromatic and polar fractions were tested for toxicity using the MicrotoxR test, bivalve larval mortality and development (Mytilus); several measures of genotoxicity in Mytilus, including SOS ChromotestR, anaphase aberrations and sister chromatid exchange; and survival, anaphase aberrations and teratogenicity in coho salmon (Onchorhynchus kisutch). MicrotoxR and SOS ChromotestR protocols were applied in a screening mode to all samples, whereas other tests were applied only to selected fractions from two sites. Samples from Bay of Isles (oiled) were consistently more toxic (usually only 2 to 5-fold) than the Mooselips Bay (unoiled) samples, which gave very low responses in all tests. for both sites, however, responses to polar and aromatic fractions were about the same in most tests, suggesting that while the overall toxicity of the oil was low in these samples, at least part of that toxicity was derived from polar constituents. Compared to the parent hydrocarbons, polar oxidation products partition preferentially into pore-water and are more rapidly diluted and dispersed in the water column. These results suggest that polar oxidation products of petroleum hydrocarbons pose little risk to marine organisms, except possibly for infauna continuously exposed to pore-water in heavily oiled sediments. Independent surveys showed that sediment toxicity in PWS declined during 1989–1991 to near background levels, in accord with previous understanding of oil weathering and toxicity.  相似文献   
3.
Standardized tests were applied to aromatic and polar fractions of sediment extracts to determine whether polar constituents or oxidative degradation products contributed significantly to the toxicity of sediments oiled by the Exxon Valdez spill. Intertidal sediment and pore-water samples were collected in September 1990 from two heavily oiled sites and an unoiled site in Prince William Sound (PWS). Methylene chloride extracts from these samples were fractionated by liquid chromatography into aliphatic, aromatic and polar fractions, and the aromatic and polar fractions were tested for toxicity using the MicrotoxR test, bivalve larval mortality and development (Mytilus); several measures of genotoxicity in Mytilus, including SOS ChromotestR, anaphase aberrations and sister chromatid exchange; and survival, anaphase aberrations and teratogenicity in coho salmon (Onchorhynchus kisutch). MicrotoxR and SOS ChromotestR protocols were applied in a screening mode to all samples, whereas other tests were applied only to selected fractions from two sites. Samples from Bay of Isles (oiled) were consistently more toxic (usually only 2 to 5-fold) than the Mooselips Bay (unoiled) samples, which gave very low responses in all tests. for both sites, however, responses to polar and aromatic fractions were about the same in most tests, suggesting that while the overall toxicity of the oil was low in these samples, at least part of that toxicity was derived from polar constituents. Compared to the parent hydrocarbons, polar oxidation products partition preferentially into pore-water and are more rapidly diluted and dispersed in the water column. These results suggest that polar oxidation products of petroleum hydrocarbons pose little risk to marine organisms, except possibly for infauna continuously exposed to pore-water in heavily oiled sediments. Independent surveys showed that sediment toxicity in PWS declined during 1989-1991 to near background levels, in accord with previous understanding of oil weathering and toxicity.  相似文献   
4.
Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts, in that edge effects manifest themselves through the presence of trees, a novel habitat component in much of the tallgrass prairie. Grazing is also a key associate of increased parasitism. Areas managed with prescribed fire, used frequently to increase forage for grazing cattle, may experience higher rates of brood parasitism. Regardless, removing trees and shrubs along roadsides and refraining from planting them along new roads may benefit grassland birds.  相似文献   
5.
Freshwater and the services it provides are vital to both natural ecosystems and human needs; however, extreme climates and their influence on freshwater availability can be challenging for municipal planners and engineers to manage these resources effectively. In Arctic Canada, financial and human capital limitations have left a legacy of freshwater systems that underserve current communities and may be inadequate in the near future under a warming climate, growing population, and increasing demand. We address this challenge to community water resource planning by applying several novel water supply forecasting methods to evaluate the Apex River as an alternative freshwater source for Iqaluit, Nunavut (Canada). Surveys of water isotope composition of the Apex River and tributaries indicated that rainfall is the main source of water replenishment. This information was utilized to calibrate a water resource assessment that considered climate forecasting scenarios and their influence on supply, and alternative scenarios for freshwater management to better adapt to a changing climate. We found that under current climate and demand conditions, the freshwater supply of Iqaluit would be in a perpetual state of drawdown by 2024. Analysis of current infrastructure proposals revealed significant deficiencies in the supply extensions proposed whereby the Apex replenishment pipeline would only provide a 2-year extension to current municipal supply. Our heuristic supply forecast methods allowed for several alternative supply strategies to be rapidly evaluated, which will aid the community planning process by specifically quantifying the service life of the city’s current and future primary water supply.  相似文献   
6.
Electron backscatter diffraction (EBSD) is a powerful microscopic technique to characterise the crystallography of biomineralisation. Here, we use high-resolution EBSD to characterise one of the least studied shells in the ocean, the female argonaut brood chamber, and to examine the changes in shell microstructure in response to incubation in decreased pH conditions. The thin (225 μm) shell of Argonauta nodosa is magnesium calcite with an average magnesium content of ca. 5.1 Wt % MgCO3. EBSD and scanning electron microscopy (SEM) revealed that calcification of the shell is bidirectional with formation of irregular crystalline grains. Following a 2 week incubation in a range of pH treatments (pH, 8.1–7.2), shell fragment weight decreased by dissolution in pH ≤ 7.8. EBSD and SEM revealed altered shell crystallography and microstructure at pH ≤ 7.4 due to preferential etching down crystallite grain boundaries and a change in crystalline orientation on both the inner and outer shell surfaces. Our study highlights the value of EBSD for the detailed examination of biogenic carbonates and its potential use in the field of ocean acidification research.  相似文献   
7.
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.  相似文献   
8.
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water‐ and sediment‐quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery‐raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed‐sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water‐ and sediment‐quality concerns for mussel conservation in the Clinch River.  相似文献   
9.
ABSTRACT: A geographic information system (GRASS 3.1) was used to correlate the availability of nitrogen fertilizer with the susceptibility of ground water to pollution in Texas to identify potential ground water quality problems. An agricultural pollution susceptibility map, produced by the Texas Water Commission using the DRASTIC methodology, was combined with information on cropped areas, recommended nitrogen fertilizer application rates, and aquifer outcrops. A Nitrogen Fertilizer Pollution Potential Index was generated, identifying 24 percent of Texas within the high pollution potential category An analysis of the susceptibility of major aquifer outcrops to potential pollution from nitrogen fertilizer indicated that 34 percent of the outcrop areas fall in the high pollution potential range. It is proposed that correlating the availability of a pollutant with an assessment of the susceptibility of ground water to pollution yields a more accurate screening tool for identifying potential pollution problems than considering susceptibility alone.  相似文献   
10.
Phosphorus (P) runoff from manure can lead to eutrophication of surface water and algae growth. This study evaluates the impacts of alternative P reduction practices on dairy farm net returns and on potential P runoff. The P control practices include dairy herd nutrient management, crop nutrient management, and runoff and erosion control. Four farms representative of dairies in the Virginia Shenandoah Valley are simulated including dairies with and without supplementary broiler enterprises and with average and below average land area. A mathematical programming model was developed to predict farm production and net returns and the GLEAMS model was used to predict potential P runoff. The farms are evaluated under four scenarios: Scenario 1, no constraint on P runoff with access to crop nutrient, runoff and erosion control strategies but no access to dairy herd nutrient control strategies; Scenario 2, no constraint on P runoff with access to all crop and dairy herd nutrient control strategies; Scenario 3, constraint on P runoff with access to crop nutrient, runoff and erosion control strategies but no access to dairy herd nutrient control strategies; and Scenario 4, constraint on P runoff with access to all crop and dairy herd nutrient control strategies. Under Scenario 2, the herd nutrient control strategies increase milk output per cow and net returns on both farms and reduce P content of manure and P runoff. Under Scenario 3, limiting P runoff reduces farm returns by 1 and 3% on the average and small farms, respectively. Under Scenario 4, the P runoff constraint is less costly, reducing returns by less than 1% on both farms. Animal nutrient control strategies should be an important part of pollution control policies and programs for livestock intensive watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号