首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
废物处理   4篇
环保管理   3篇
污染及防治   6篇
评价与监测   4篇
  2023年   4篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有17条查询结果,搜索用时 62 毫秒
1.
The study comprised suitability assessment of groundwater for drinking, irrigation, and industrial use. A total of 34 groundwater samples were collected from Rewari town and its perimeter from the land chiefly used for agriculture. Physico-chemical characterization of the samples revealed that groundwater from most of the sources was not fit for drinking owing to a high concentration of calcium, magnesium, hardness and fluoride. Suitability for irrigation, too, was low since most of the sources had high value of sodium adsorption ratio (SAR), residual sodium carbonate (RSC), soluble sodium percentage (SSP) and magnesium hazard which can render salinity and alkali hazard to soils on long term use in irrigation. No source of water was found to be suitable for industrial application since it had high concentration of calcium carbonate which can precipitate very easily. It was observed that sodium, sulphate, and chloride were the chief ions present in water and based on the abundance of ions and their correlation type, most of the groundwater samples are of sodium sulphate and/or sodium chloride type. The high concentration of the chemical constituents is attributed to the lithologic composition of the area. It was observed that the water of deep meteoric percolation type was of sodium sulphate type and the shallow of sodium chloride type.  相似文献   
2.
Concentration of heavy metals (Cd, Ni, Zn, Fe, Cu, Mn, Pb, Cr, Hg and As) in the waters of River Yamuna and in the soil of agricultural fields along its course in Delhi are reported from 13 sites, spread through the Delhi stretch of Yamuna, starting from the Wazirabad barrage till the Okhla barrage. Varying concentration of heavy metals was found. Peaks were observed in samples collected downstream of Wazirabad and Okhla barrage, indicating the anthropogenic nature of the contamination. The Wazirabad section of the river receives wastewater from Najafgarh and its supplementary drains, whereas the Shahdara drain releases its pollution load upstream of the Okhla barrage. Average heavy metal concentration at different locations in the river water varied in the order of Fe>Cr>Mn>Zn>Pb>Cu>Ni>Hg>As>Cd. The river basin soil shows higher level of contamination with lesser variation than the water samples among sampling locations, thereby suggesting deposition over long periods of time through the processes of adsorption and absorption. The average heavy metal concentration at different locations in soil varied in the order of Fe>Mn>Zn>Cr>Pb>Ni>Hg>Cu>As>Cd.  相似文献   
3.
Most precious and world famed Himalayan rivers like Ganga, Yamuna, and their tributaries are originated from Uttarakhand state of India. Over the years, increased industrial activities and urban growth along the rivers and lakes have resulted in increased load over the water bodies. In the present study, a comparison of characteristics of water quality with respect to heavy metals (Fe, Zn, Cu, and Pb) and their interrelationships with some physiological parameters during different seasons of year 2010 has been made in the water bodies flowing through the two geographical regions, namely Garhwal and Kumaon regions of the Himalayan State of India. All observed values of Pb, 02 observation of the Cu, and 59 observations of Fe are found exceed with the WHO standard for drinking water; 83 observations of Pb, 110 observations of Cu, and 59 observations of Fe are found exceed with the Bureau of Indian Standards. However, none of the observation of Zn is found exceeding with the standard limit. Cu shows the highest concentration 7.30 mg/l among all observations and also its higher concentration in Kumaon rivers. All the metals show negative correlation with dissolved oxygen and pH. Fe in river Yamuna system and Zn in Kumaon rivers show significant temporal variations at 90 % level of significance (LOS). However, no significant temporal difference of remaining metals is observed even at 95 % LOS. All metals except Fe in river Yamuna system show very significant variation in spatial distribution in different river systems at 95 % LOS.  相似文献   
4.
5.
This paper emphasizes the significant challenges facing the sustainable environment, including managing and handling plastic waste and reducing carbon footprints. To tackle these challenges, it is essential to identify people's awareness levels of waste handling techniques and their pro-environmental behaviors. The study focuses on Guwahati, one of the most important cities in Northeast India, which generates increasing plastic waste daily. The paper aims to identify the factors contributing to the reduction of carbon footprints resulting from plastic waste management activities. The data collected from 1326 respondents was analyzed using factor analysis, and the reliability of the dataset was confirmed using Cronbach's alpha (0.84 for the awareness level of waste management techniques and 0.780 for the prevalent mode of plastic waste management techniques). KMO (0.796), Bartlett's test of sphericity (p < 0.001), and determinant score (0.019) were used to assess the data adequacy and factorability of the dataset, and the results were found to be satisfactory. Principal component analysis, exploratory factor analysis, and varimax orthogonal rotation method were used to identify high-loaded factors by reducing the number of variables. The results showed that two highly loaded components, namely awareness level of waste management techniques (AWMT) and prevalent mode of plastic waste management techniques (PWMT), explained 27.53% and 24.34% of the total variance, respectively, with eigenvalues of 3.35 and 2.88. The regression model confirmed the statistical significance of these factors (p < 0.001) and their relationship with the dependent variable, greenhouse reduction (GHGR). The study proposes that minimizing carbon footprints in the environment can be achieved by focusing on a limited number of controllable factors such as AWMT and PWMT. This study provides valuable insights to the authorities in controlling waste generation and achieving a pollution-free environment.  相似文献   
6.
In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more valuable fuel gas. The operating temperatures for the pyrolysis and gasification were between 700° and 1000°C. The experimental parameters were the operating temperature, catalyst type, basic promoter type, and steam injection amount. Solid fuel samples (5 g) were fed into a semibatch-type quartz tube reactor when the reactor reached the designated temperature. The synthesis gas was analyzed by gas chromatography. The use of low-quality coal as fuel in co-pyrolysis with RPF was explored. For the co-pyrolysis of RPF and low-quality coal, the effectiveness of the catalysts for fuel gas production followed the order Mg > NiO > Ni. In catalytic gasification of RPF, the addition of Al2O3 seemed to reduce the activity of the corresponding catalysts Ni and Mg. The maximum fuel gas yield (92.6%) was attained when Mg/Fe2O3 was used in steam gasification at 1000°C.  相似文献   
7.
Journal of Material Cycles and Waste Management - A great deal of focus has been given to finding a bio-composite film to substitute petroleum-based synthetic plastic in recent years. Many animals...  相似文献   
8.
Environmental Science and Pollution Research - Ingestion of fluoride through consumption of contaminated food grains has been regarded to be hazardous for consumer health. The current study...  相似文献   
9.
ABSTRACT

Cold chain industry has a vast potential for waste heat recovery. It is a matter of importance for energy efficiency point of view, as global energy demand is increasing day by day. Ample amount of low-grade energy is either unutilized or underutilized. The heat rejected by a Heat pump or refrigeration system emerged as a promising solution for dehydration by utilizing low-grade waste heat despite higher investment. As compared to solar drying technology, heat pump drying evolved as a reliable method regarding better process control, energy efficiency, and quality of the product to be dried. Energy utilized through the refrigeration system’s waste/exhaust heat recovery in combination with or without renewable energy source enhances the overall efficiency of the system and also reduces the cost. This useful review investigated and compared the research findings of waste heat utilization through heat pump and from condenser of refrigeration system on laboratory, pilot as well as industrial scale for drying of various fruits, vegetables, and agro products. Various drying parameters like drying rate, moisture content, Specific Moisture Extraction Rate (SMER), Coefficient of Performance (COP), Exergy efficiency, and temperature as well as humidity conditions inside the drying chamber were also reviewed to promote the technological advancement of energy utilization by commercial cold storage waste heat recovery.  相似文献   
10.
Increasing amount of wastes is posing great difficulties for all countries across the world. The problem of waste management is more severe in developing countries such as India where the rates of economic growth and urbanization are increasing at a fast pace. The governments in these countries are often constrained by limited technical and financial capabilities, which prevent them from effectively addressing these problems. There is a limited participation from the private players too in terms of setting up of waste recycling units. The present study aims at identifying various barriers that challenge the establishment of these units, specific to India. Further, it attempts to identify the most influential barriers by utilizing multicriterion decision-making tools of interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL). The findings of the study suggest that the lack of funds, input material, and subsidy are the most influential barriers that are needed to be addressed for the development of waste recycling infrastructure in India.

Implications: This work has been carried out to address the problem of proper waste management in India. To deal with this problem, the method of waste recycling has been felt appropriate by the government of various countries, including India. Therefore, the barriers that play vital role in waste recycling for private players have been identified and their importance has been established with the help of ISM and DEMATEL methods. Doing so will assist the government to take appropriate steps for the betterment of waste recycling infrastructure in India and enhance waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号