首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
环保管理   2篇
综合类   2篇
基础理论   4篇
污染及防治   3篇
评价与监测   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2007年   1篇
  2005年   2篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1958年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socio-economic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.  相似文献   
2.
Beitz T  Bechmann W  Mitzner R 《Chemosphere》1999,38(2):351-361
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.  相似文献   
3.
The organic ground substance (OGS) is an adsorbent of many of the harmful substances found in productive soil. Using the example of adsorption enthalpy of Phenol derivatives, it can be shown that the organic connection on the OGS in sewage farm land and nonsewage farm land is comparable. Based on the OGS content, the sewage farm land showed itself to be the worse adsorbent. The reasons lie in blockage at the adsorption points caused by other molecules, but also because not all of the OGS on the sewage farm land functions as an adsorbent.  相似文献   
4.
5.
The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.  相似文献   
6.
Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff.  相似文献   
7.
In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly important for the P concentration in most European rivers, lakes, and estuaries, even though the quantity of P lost from agricultural areas in European catchments varies at least one order of magnitude (<0.2 kg P ha(-1) to >2.1 kg P ha(-1)). We focus on the importance of P for the implementation of the EU Water Framework Directive and discuss the benefits, uncertainties, and side effects of the different targeted mitigation measures that can be adopted to combat P losses from agricultural areas in river basins. Experimental evidence of the effects of some of the main targeted mitigation measures hitherto implemented is demonstrated, including: (i) soil tillage changes, (ii) treatment of soils near ditches and streams with iron to reduce P transport from source areas to surface waters, (iii) establishment of buffer zones for retaining P from surface runoff, (iv) restoration of river-floodplain systems to allow natural inundation of riparian areas and deposition of P, and (v) inundation of riparian areas with tile drainage water for P retention. Furthermore, we show how river basin managers can map and analyze the extent and importance of P risk areas, exemplified by four catchments differing in size in Norway, Denmark, and the Netherlands. Finally, we discuss the factors and mechanisms that may delay and/or counteract the responses of mitigation measures for combating P losses from agricultural areas when monitored at the catchment scale.  相似文献   
8.
In 13C cross-polarisation magic angle spinning (CPMAS) spectra of soil samples, the paramagnetic soil constituents partially discriminate against the signal intensity of the 13C atoms. The aim of the present study was to check to what extent this signal depression depends on the paramagnetic ion content and if it is selective for a certain kind of carbon species. The spectra of a variety of particle size fractions of five quite different soils were recorded. A procedure was developed to compare quantitatively the relative carbon content of the different spectra. It was found that iron ions differ in their efficiency to discriminate against the carbon signals. Nevertheless a strong linear correlation between the detectability of carbon and cube root(wt.%Fe) was observed for both the total signal and the signal of the different carbon species as well. This underlines that iron ions mainly influence the depression of the 13C signal in soil spectra. Furthermore we found, that for C: Fe ratios of 1.5 to 20 non-selective signal losses dominate. Despite a high percentage of non-detectable carbon (up to 90%), the 13C CPMAS spectra of our soil samples correctly reflect the relative composition of soil organic matter.  相似文献   
9.
10.
Testing the Norwegian phosphorus index at the field and subcatchment scale   总被引:1,自引:0,他引:1  
Simple risk assessment tools for agricultural phosphorus (P) losses, like the P index, have been developed in the U.S.A. and in some European countries. Despite its popularity, there have been surprisingly few studies, which try to test the index close to the field scale. For Norway, the P index approach comprises the risk related to both the source of P (soil P status, amount of fertilizer and manure as well as method of application, plant P release by freezing and P balance) and the risk related to transport of P (erosion, flooding, surface runoff, contributing distance, modified connectivity, soil profile, subsurface drainage). In this paper, we have applied the Norwegian P index to farmer fields within a small agricultural catchment, the Skuterud catchment (450 ha), in southeastern Norway. The Norwegian P index was tested for two agricultural fields (0.3–0.4 ha) and nine subcatchments (6–65 ha). Total P concentrations in runoff from the 11 study areas were measured during the year from May 2001 to April 2002. Results from the testing showed that the Norwegian P index described 66% of the variation in measured relative total P concentration for fields and subcatchments included in this study. Additionally, the P index was able to detect fields and subcatchments with the highest measured P concentrations. Results also showed that the source factor contributed most to the variation between fields and hence were important for the identification of high-risk areas in Skuterud catchment. It was found that the soil P status described 66% of the variation in the source factor. Among the transport variables, it was found that both erosion risk and contributing distance had an important influence on the transport factor. Overall, the study illustrated the potential of the P index to detect areas with the highest risk of P loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号