首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
废物处理   1篇
综合类   7篇
基础理论   2篇
污染及防治   9篇
评价与监测   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  1924年   1篇
  1920年   1篇
  1917年   1篇
  1916年   1篇
排序方式: 共有20条查询结果,搜索用时 250 毫秒
1.
Sustainable resource management is the critical agricultural research and development challenge in sub-Saharan Africa. The accumulated knowledge on soil management gathered over the last 10 years, combined with solid crop improvement and plant health research at farmers’ level, has brought us to a stage where we can now address with confidence the intensification of cereal–grain–legume-based cropping systems in the dry savanna of West Africa in a sustainable and environmentally positive manner.Two sustainable farming systems that greatly enhance the productivity and sustainability of integrated livestock systems have been developed and implemented in the dry savanna of Nigeria. These are: (i) maize (Zea mays L.)–promiscuous soybean [Glycine max (L.) Merr.] rotations that combine high nitrogen fixation and the ability to kill large numbers of Striga hermonthica seeds in the soil; and (ii) miflet [Eleusine coracana (L.) Gaerth] and dual-purpose cowpea [Vigna unguiculata (L.) Walp.]. Improvement of the cropping systems in the dry savanna has been driven by the adoption of promiscuously nodulating soybean varieties (in particular TGx 1448-2E) and dual-purpose cowpea. The rate of adoption is very high, even in the absence of an efficient seed distribution system. The number of farmers cultivating the improved varieties increased by 228% during the last 3 years. Increased production of promiscuous soybean has been stimulated by increased demand from industries and home utilization. Production in Nigeria was estimated at 405,000 t in 1999 compared to less than 60,000 t in 1984. Economic analysis of these systems shows already an increase of 50–70% in the gross incomes of adopting farmers compared to those still following the current practices, mainly continuous maize cultivation. Furthermore, increases in legume areas of 10% in Nigeria (about 30,000 ha in the northern Guinea savanna) and increases of 20% in yield have translated into additional fixed nitrogen valued annually at US$ 44 million. This reflects, at the same time, an equivalent increase in land-use productivity, and with further spread of the improved crops, there are excellent prospects for additional economic and environmental benefits from a very large recommendation domain across West Africa.  相似文献   
2.
Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha?1 year?1. Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future.  相似文献   
3.
In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20 ± 1 °C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ34S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ34S and δ18O in biotic conditions and we also highlight a good relationship between δ34S and sulfate reduction rate in biotic columns.  相似文献   
4.
5.
Gram negative bacteria classified as Alcaligenes eutrophus and carrying large resistance plasmids (generally two) were found in various industrial sites highly contaminated by heavy metals (Zn++, Cu++, Co++,...). These strains were detected by DNA hybridization with a probe made with a 9kb fragment (ccz+ fragment) encoding for resistances to Cd++, Co++ and Zn++, and cloned from plasmid pMOL30. This plasmid was isolated from the representative strain A. eutrophus CH34 which harbours the plasmids pMOL30 (240 kb) and pMOL28 (165 kb). Phenotypes related to pMOL28 and pMOL30 include the tolerance to Cd++, Co++, Cr04 =, Cu++, Hg++, Ni++, Pb++ and Zn++. The described genetic properties of these plasmids refer to some cloned or mapped functions and to some plasmid rearrangements. Plasmid pMOL85 (250 kb) which is related to pMOL30 was also described. Its host (A. eutrophus DS185) was isolated from a zinc desert. pMOL85 can efficiently self transfer in plasmidfree derivatives.  相似文献   
6.
A site- and receptor-specific risk management strategy for groundwater pollution based on the measurement of contaminant mass flux is proposed. The approach is useful and compatible with the demands formulated in the European Water Framework Directive, its Groundwater Daughter Directive and the regulations applicable in the EU member states. The proposed CMF method focuses on the following: (1) capture zones, (2) the location of control planes, (3) the definition of the maximum allowed contaminant mass discharge and (4) contaminant mass flux measurements. For every control plane, such a maximum allowed contaminant mass discharge is derived and is crucial for the receptor risk management strategy. The method is demonstrated for a large area of groundwater pollution present in the industrial area of Vilvoorde–Machelen located in Flanders, Belgium.  相似文献   
7.
A large proportion of total P in the soils of the area is unavailable to plants and consequently P is the second most limiting nutrient. The labile and moderately labile phosphorus fractions and adsorption characteristics of surface and subsurface horizons of eleven soil profiles in the derived savanna (DS) and the northern Guinea savanna (NGS) of West Africa were assessed. The labile P fractions are the resin and HCO3-extractable inorganic (Pi) and organic (Po) P. The moderately labile fractions are the NaOH-extractable portion of soil P in the Hedley sequential procedure. In the DS soils, the resin P, considered the most readily available fraction, varied from 1 to 14 mg kg−1, HCO3-Pi ranged from 3.3 to 11, and HCO3-PO was between 4 and 12 mg kg−1 in the surface horizon. In the NGS, the topsoil contained 1.5–3 mg kg−1 of resin P, 5–8 mg kg−1 of HCO3-Pi, and 7.5–9.7 mg kg−1 of HCO3-Po. Sodium hydroxide-Po was the largest of the fractions in all the soils studied. It ranged from 23 to 55 mg kg−1 in the topsoil. In general, the labile P levels were higher in soils of the DS than of the NGS and were related to the oxalate-extractable Fe (Feox), and Al (Alox) as well as to soil texture. The subsoil of Kasuwan Magani (profile KS 9–21 cm) required 153 mg P kg−1 to maintain 0.2 mg P l−1 in solution (standard P requirement), and Danayamaka (profile DD 7–32 cm) required 145 mg P kg−1. These could translate to 214 and 200 kg P ha−1 if a plow layer of 10 cm is assumed. Because these are within the plow layer, more P fertilizer would be needed for crop production than in the other soils. The standard P requirement and the adsorption maxima were related to Feox and Alox, dithionite-Fe (Fed), and texture. The increase in labile P content with decreasing Feox and Alox could imply that management practices capable of reducing the activities of Fe and Al in solution might improve P availability.  相似文献   
8.
9.
10.
BACKGROUND, AIMS AND SCOPE: In a previous study, we explored the use of acetate, lactate, molasses, Hydrogen Release Compound (HRC, which is based on a biodegradable poly-lactate ester), methanol and ethanol as carbon source and electron donor to promote bacterial sulfate reduction in batch experiments, this with regards to applying an in situ metal precipitation (ISMP) process as a remediation tool to treat heavy metal contaminated groundwater at the site of a nonferrous metal work company. Based on the results of these batch tests, column experiments were conducted with lactate, molasses and HRCI as the next step in our preliminary study for a go-no go decision for dimensioning an on site application of the ISMP process that applies the activity of the endogenous population of sulfate-reducing bacteria (SRB). Special attention was given to the sustainability of the metal precipitation process under circumstances of changing chemical oxygen demand (COD) to [SO4(2-)] ratios or disrupted substrate supply. METHODS: To optimize the ISMP process, an insight is needed in the composition and activity of the indigenous SRB community, as well as information on the way its composition and activity are affected by process conditions such as the added type of C-source/ electron donor, or the presence of other prokaryotes (e.g. fermenting bacteria, methane producing Archaea, acetogens). Therefore, the biological sulfate reduction process in the column experiments was evaluated by combining classical analytical methods [measuring heavy metal concentration, SO4(2-)-concentration, pH, dissolved organic carbon (DOC)] with molecular methods [denaturing gradient gel electrophoresis (DGGE) fingerprinting and phylogenetic sequence analysis] based on either the 16S rRNA-gene or the dsr (dissimilatory sulfite reductase) gene, the latter being a specific biomarker for SRB. RESULTS AND DISCUSSION: All carbon sources tested promoted SRB activity, which resulted within 8 weeks in a drastic reduction of the sulfate and heavy metal contents in the column effluents. However, unexpected temporal decreases in the efficiency of the ISMP process, accompanied by the release of precipitated metals, were observed for most conditions tested. The most dramatic observation of the failing ISMP process was observed within 12 weeks for the molasses amended column. Subsequent lowering the COD/ SO4(2-) ratio from 1.9 to 0.4 did not alter the outcome of sulfate reduction and metal precipitation efficiency in this set-up. Remarkably, after 6 months of inactivity, bacterial sulfate reduction was recovered in the molasses set up when the original COD/ SO4(2-) ratio of 1.9 was applied again. Intentional disruption of the lactate and HRC supplies resulted in an immediate stagnation of the ISMP processes and in a rapid release of precipitated metals into the column effluents. However, the ISMP process could be restored after substrate amendment. 16S rDNA-based DGGE analysis revealed that the SRB population, in accordance with the results of the previously performed batch experiments, consisted exclusively of members of the genus Desulfosporosinus. The community of Archaea was characterized by sequencing amplicons of archaeal and methanogen-specific PCR reactions. This approach only revealed the presence of non-thermophilic Crenarchaeota, a novel group of organisms which is only distantly related to methane producing Euryarchaeota. DGGE on the dsrB genes was successfully used to link the results of the ISMP process to the community composition of the sulfate reducing bacteria. CONCLUSIONS: In the case of an intentional disruption of substrate supply, the ISMP process failed most likely because the growth and activity of the indigenous SRB community stopped due to a lack of a carbon and electron donor. On the other hand, the cause of the sudden temporal shortcomings of the ISMP process in the presence of different substrates was not immediately clear. It was first thought to be the result of competition between methanogenic prokaryotes (MP) and sulfate reducers, since the formation of small amounts of CH4 (0.01-0.03 ppm ml(-1) was detected. However, the results of molecular analyzes indicate that methanogens do not constitute a major fraction of the microbial communities that were enriched in the column experiments. Therefore, we postulate that the SRB population becomes inhibited by the formed metal sulfides. RECOMMENDATION AND PERSPECTIVE: Our results indicate that the ISMP process is highly dependent on SRB-stimulation by substrate amendments and suggest that this remedial approach might not be viable for long-term application unless substrate amendments are continued and environmental conditions are strictly controlled. This will include the removal of affected aquifer material from the metal precipitation zone at the end of the remediation process, or removal of metal precipitates when the microbial activity decreases. Additional tests are necessary to investigate what will happen when clear groundwater passes through the reactive zone while no more C-sources are amended and all indigenous carbon is consumed. Also, the effects of dramatic increases in sulfate- or HM-concentrations on the SRB-community and the concomitant ISMP process need to be studied in more detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号