首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
综合类   1篇
基础理论   2篇
污染及防治   1篇
  2021年   3篇
  1996年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Environmental Science and Pollution Research - Serious groundwater pollution not only affects the development of enterprises but also threatens the life and health of residents. To explore the...  相似文献   
2.
新疆棉区棉花黄萎病发生危害严重,提高该病的生态防控技术对实现棉花"化肥、农药"减施增效有重要意义.文章以阿克苏、石河子和库尔勒三地棉花黄萎病不同发生程度棉田土壤为研究对象,利用高通量测序技术对土壤细菌种群结构进行研究,并分析土壤理化性质与细菌多样性及种群结构的相关性,以期揭示棉田土壤的细菌群落结构差异及主要影响因子,为...  相似文献   
3.
• A model coupling water-heat-salt of unsaturated frozen soil was established. • Future temperature, precipitation, and evaporation increase in freeze–thaw period. • Soil water, heat, and salt transport are closely coupled during freeze–thaw period. • Freeze–thaw cycles and future climate change can exacerbate salinization. The transport mechanisms of water, heat, and salt in unsaturated frozen soil, as well as its response to future climate change are in urgent need of study. In this study, western Jilin Province in north-eastern China was studied to produce a model of coupled water-heat-salt in unsaturated frozen soil using CoupModel. The water, heat, and salt dynamics of unsaturated frozen soil under three representative concentration pathway (RCP) scenarios were simulated to analyze the effects of future climate change on unsaturated frozen soil. The results show that water, heat, and salt migration are tightly coupled, and the soil salt concentration in the surface layer (10 cm) exhibits explosive growth after freezing and thawing. The future (2020–2099) meteorological factors in the study area were predicted using the Statistical Downscaling Model (SDSM). For RCP2.6, RCP4.5, and RCP8.5 scenarios, future temperatures during the freeze–thaw period increased by 2.68°C, 3.18°C, and 4.28°C, respectively; precipitation increased by 30.28 mm, 28.41 mm, and 32.17 mm, respectively; and evaporation increased by 93.57 mm, 106.95 mm, and 130.57 mm, respectively. Climate change will shorten the freeze–thaw period, advance the soil melting time from April to March, and enhance water and salt transport. Compared to the baseline period (1961–2005), future soil salt concentrations at 10 cm increased by 1547.54 mg/L, 1762.86 mg/L, and 1713.66 mg/L under RCP2.6, RCP4.5, and RCP8.5, respectively. The explosive salt accumulation is more obvious. Effective measures should be taken to prevent the salinization of unsaturated frozen soils and address climate change.  相似文献   
4.
温室气体CO2排放浓度及CO2汇的分布研究初探   总被引:3,自引:0,他引:3       下载免费PDF全文
以1990年全国各地消耗的化石燃料为基础,计算出全国各地CO2的排放量.用区域尺度大气扩散模型,模拟计算了1990年中国CO2的浓度分布。结果表明,全国CO2年增长的平均浓度不超过0.55 mg/m3,为目前全球CO2平均浓度年增长3.24 mg/m3(IPCC,1992)的1/6。同时还计算了中国的土壤、农作物、森林、草地和河流湖泊1990年吸收CO2的总量,给出了以省、市为单位的CO2汇的分布图。结果指出,森林、草地和农作物是CO2的巨大汇。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号