首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   4篇
  国内免费   15篇
安全科学   15篇
废物处理   27篇
环保管理   21篇
综合类   26篇
基础理论   43篇
污染及防治   62篇
评价与监测   14篇
社会与环境   4篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   9篇
  2016年   12篇
  2015年   8篇
  2014年   9篇
  2013年   23篇
  2012年   13篇
  2011年   16篇
  2010年   9篇
  2009年   9篇
  2008年   21篇
  2007年   9篇
  2006年   14篇
  2005年   16篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有212条查询结果,搜索用时 31 毫秒
1.
The toxic effects of the composites of Fe~0 and Cu~0 with different percentages of CNTs were examined based on the activity of bacterial bioluminescence and seed germination. In terms of the EC_50 values, the toxic effects of Cu~0 on bacterial bioluminescence and seed germination were approximately 2 and 180 times greater than that of Fe~0, respectively. The toxicity increased with increasing CNT content in the Cu-CNT mixtures for both organisms,whereas opposite results were observed with Fe-CNT mixtures. The mean toxic effects of Cu-CNT(6%) were approximately 1.3–1.4 times greater than that of Cu-CNT(0%), whereas the toxic effects of Fe-CNT(6%) were approximately 2.1–2.5 times lower than that of Fe-CNT(0%) for both the bioluminescence activity and seed germination. The causes of this phenomenon are unclear at this point. More research will be needed to elucidate the mechanism of the toxicity of nano-mixture materials and the causes of the different patterns of toxicity with Cu-and Fe-CNT mixtures.  相似文献   
2.
We report results from the application of an integrated assessment model, MiniCAM 1.0. The model is employed to explore the full range of climate change implications of the successful development of cost effective, advanced, energy technologies. These technologies are shown to have a profound effect on the future magnitude and rate of anthropogenic climate change. We find that the introduction of assumptions developed by a group of ‘bottom-up’ modelers for the LEESS scenarios into a ‘top-down’ model, the Edmonds-Reilly-Barns Model, leads to ‘top down’ emissions trajectories similar to those of the LEESS. The cumulative effect of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv. While all energy technologies play roles, the introduction of advanced biomass energy production technology is particularly important. The consideration of all greenhouse related anthropogenic emissions, and in particular sulfur dioxide, is found to be important. We find that the consideration of sulfur dioxide emissions coupled to rapid reductions in carbon dioxide emissions leads to higher global mean temperatures prior to 2050 than in the reference case. This result is due to the short-term cooling impact of sulfate aerosols, which dominates the long-term warming impact of CO2 and CH4 in the years prior to 2050. We also show that damage calculations which use only mean global temperature and income may be underestimating damages by up to a factor of five. Disaggregating income reduces this to a factor of two, still a major error. Finally, the role of the discount rate is shown to be extraordinarily important to technology preference.  相似文献   
3.
A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m3 of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6 × 10?8 to 3.6 × 10?6 m3 s?1 per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5 × 10?6 to 4.2 × 10?4 m s?1. The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p < 0.025) decomposition.  相似文献   
4.
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   
5.
Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day).

Implications: In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.  相似文献   

6.
7.
A comparative study on Fe/Al, Fe/Al/Cu, and Fe/Al/Ni catalysts in high-temperature water–gas shift reaction (HT–WGS) using simulated waste-derived synthesis gas has been carried out. The metal oxide (Cu and Ni) and aluminum incorporated Fe catalysts were designed to get highly active HT–WGS catalysts. Despite the high CO concentration in the simulated waste-derived synthesis gas, Fe/Al/Cu catalyst exhibited the highest CO conversion (84 %) and 100 % selectivity to CO2 at a very high gas hourly space velocity (GHSV) of 40,057 h?1. The outstanding catalytic performance is mainly due to easier reducibility, the synergy effect of Cu and Al, and the stability of the magnetite.  相似文献   
8.
This research has been conducted continuously since 2009 as part of a cohort of studies examining relationships between asthma and genetic factors, dietary habits, and environmental factors. Based on data from environmental research on house dust mites and endotoxins, which are widely known as pollutants in bedding that cause asthma in pregnant women and children, this work was conducted to obtain basic data that can be used in future cohort studies that analyze links between distribution of biological hazards and physical features of residential environments. The detection rates of house dust mite allergens, Der p1 and Der f1, were 52.7 and 86.5 %, respectively, indicating that Der f1 is a dominant species in domestic indoor environments. According to comparisons between concentrations of house dust mites and endotoxins in bedding of pregnant women and children, Der p1 and endotoxins showed significantly lower concentrations in bedding of pregnant women compared with those in bedding of children, whereas Der f1 showed no significant difference in concentration according to bedding.  相似文献   
9.
Abstract

Four popular thermally desorbable adsorbents used for air sampling (Tenax TA, Tenax GR, Carbopack B, and Carbopack X) are examined for the potential to form artifacts with ozone (O3) at environmental concentrations. The performance of these adsorbents for the ketone and alde-hyde species identified as O3-adsorbent artifacts was also characterized, including recovery, linearity, and method detection limits (MDLs). Using gas chromatography/mass spectrometry, 13 different artifacts were identified and confirmed for both Tenax TA and Tenax GR, 9 for Carbopack B, but none for Carbopack X. Several O3 artifacts not reported previously were identified, including: pentanal, 3-hexanone, 2-hexanone, hexanal, 3-heptanone, and heptanal with Tenax TA; pentanal, 3-hexanone, 2-hexanone, hexanal, and 3-heptanone on Tenax GR; and 1-octene and 1-nonene with Carbopack B. Levels of straight-chain aldehyde artifacts rapidly diminished after a few cycles of adsorbent conditioning/O3 exposure, and concentrations could be predicted using a first-order model. Phenyl-substituted carbonyl artifacts (benzalde-hyde and acetophenone) persisted on Tenax TA and GR even after 10 O3 exposure-conditioning cycles. O3 breakthrough through the adsorbent bed was most rapid in adsorbents that yielded the highest levels of artifacts. Overall, artifact composition and concentration are shown to depend on O3 concentration and dose, conditioning method, and adsorbent type and age. Calibrations showed good linearity, and most compounds had reasonable recoveries, for example, 90 ±15% for Tenax TA, 97 ±23% for Tenax GR, 101 ±24% for Carbopack B, and 79 ±25% (91 ±9% for n-aldehydes) for Carbopack X. Benzeneacetaldehyde recovery was notably poorer (22–63% across the four adsorbents). MDLs for several compounds were relatively high, up to 5 ng. By accounting for both artifact formation and method performance, this work helps to identify which carbonyl compounds can be measured using thermally desorbable adsorbents and which may be prone to bias because of the formation of O3- adsorbent artifacts.  相似文献   
10.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号