首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
废物处理   10篇
综合类   1篇
污染及防治   13篇
  2021年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1994年   1篇
  1993年   3篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Previous research in our laboratory reported a convenient laboratory-scale composting test method to study the weight loss of polymer films in aerobic thermophilic (53°C) reactors maintained at a 60% moisture content. The laboratory-scale compost reactors contained the following synthetic compost mixture (percentage on dry-weight basis): tree leaves (45.0), shredded paper (16.5), food (6.7), meat (5.8), cow manure (17.5), sawdust (1.9), aluminum and steel shavings (2.4), glass beads (1.3), urea (1.9), and a compost seed (1.0) which is designated Mix-1 in this work. To simplify the laboratory-scale compost weight loss test method and better understand how compost mixture compositions and environmental parameters affect the rate of plastic degradation, a systematic variation of the synthetic mixture composition as well as the moisture content was carried out. Cellulose acetate (CA) with a degree of substitution (DS) value of 1.7 and cellophane films were chosen as test polymer substrates for this work. The extent of CA DS-1.7 and cellophane weight loss as a function of the exposure time remained unchanged when the metal and glass components of the mixture were excluded in Mix-2. Further study showed that large variations in the mixture composition such as the replacement of tree leaves, food, meat, and sawdust with steam-exploded wood and alfalfa (forming Mix-C) could be made with little or no change in the time dependence of CA DS-1.7 film weight loss. In contrast, substituting tree leaves, food, meat, cow manure, and sawdust with steam-exploded wood in combination with either Rabbit Choice (Mix-D) or starch and urea (Mix-E) resulted in a significant time increase (from 7 to 12 days) for the complete disappearance of CA DS-1.7 films. Interestingly, in this work no direct correlation was observed between the C/N ratio (which ranged from 13.9 to 61.4) and the CA DS-1.7 film weight loss. Decreasing moisture contents of the compost Mix-2 from 60 and 50 and 40% resulted in dramatic changes in polymer degradation such that CA DS-1.7 showed an increase in the time period for a complete disappearance of polymer films from 6 to 16 and 30 days, respectively.Guest Editor: Dr. Graham Swift, Rohm & Haas.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   
2.
Degradation of dyes in aqueous solutions by the Fenton process   总被引:3,自引:0,他引:3  
Xu XR  Li HB  Wang WH  Gu JD 《Chemosphere》2004,57(7):595-600
Degradation of 20 different dyes in aqueous solutions by the Fenton process was performed. These dyes include 6 types: acidic, reactive, direct, cationic, disperse and vat dyes. The former four types of dyes were decolorized and their TOC values were decreased greatly, while the color and TOC removals of the latter two types were lower. The catalytic activities of four metal ions on the degradation efficiencies of Vat Blue BO, which was chosen as a model dye because of its lowest color and TOC removals, were compared in the dark and under the ultraviolet light irradiation. The catalytic ability of different metals was Fe2+>Cu2+>Mn2+>Ag+ in the dark, and the same sequence was obtained under irradiation condition with greater degradation efficiency. Furthermore, the efficiencies of three oxidation processes, including H2O2/UV, Fe2+/H2O2 and Fe2+/H2O2/UV were compared. The results showed that the oxidation by Fe2+/H2O2/UV was the strongest, and even greater than the arithmetic sum of the other two processes, which suggests the synergistic effect of ultraviolet and ferrous ions on the degradation reaction.  相似文献   
3.
Cheung KH  Gu JD 《Chemosphere》2003,52(9):1523-1529
An enrichment consortium and an isolate (isolate TKW) of sulfate-reducing bacteria (SRB) have been obtained from metal-contaminated marine sediments of Tokwawan, Hong Kong SAR. These bacteria are capable of reducing highly toxic and soluble hexavalent chromium (Cr6+) enzymatically into less toxic and insoluble trivalent chromium (Cr3+) under anaerobic conditions. The enrichment consortium almost completely (98.5%) reduced 0.6 mM Cr6+ in 168 h and the rate of reduction was 0.5 g (Cr6+) g(protein)(-1)h(-1). In comparison, with Cr6+ as the sole electron acceptor (as a surrogate for SO4(2-)), isolate TKW reduced 94.5% of the initially added Cr6+ (0.36 mM) in 288 h, with the rate of 0.26 g (Cr6+) g(protein)(-1)h(-1). Adsorption by these bacteria was not the major mechanism contributing to the transformation or removal of Cr6+. The biomass and Cr3+ in the cultures increased simultaneously with the reduction of Cr6+. These indigenous SRB might have potential application in bioremediation of metal contaminated sediments.  相似文献   
4.
There were 6 target DNA fragments of the three parental strains existing in the cell of GEMs( genetically engineered microorganism strain) Fhhh measured in this research by PCR(polymerase chain reaction). The determination showed that GEMs Fhhh contained all the 6 target DNA fragments, mnpl, mnp2, lipl, lip2, FLOI and 16S rDNA, and had the molecular genetic stability. Meanwhile the PCR production of each parental strain could only had its target DNA fragments and was different from each other. It may illustrate that the technique of the inter-kingdom protoplast fusion for the construction of GEMs Fhhh through the process of intercellular gene recombination could be used as a reliable bioengineefing technique to create the soecific functional stain for the nollution control.  相似文献   
5.
A respirometric method was developed to measure the mineralization of polymeric materials in a matured compost environment. For the purpose of evaluating the method, results obtained for the mineralization of glucose and cellulose are presented. The matured compost, in addition to supplied nutrients, micronutrients, and an inoculum, serves as the matrix which supports the microbial activity. Recovery of the substrate carbon in the form of carbon dioxide from the glucose and cellulose added to test vessels was 68 and 70%, respectively. A statistical evaluation of the results obtained on substrate mineralization was carried out and showed acceptable reproducibility between replicate test vessels and test runs. The testing protocol developed has the following important characteristics: (1) the test reactors are maintained at 53 °C at a high solids loading (60% moisture), which has certain characteristics that are similar to a thermophilic compost environment; (2) the test matrix providing microbial activity is derived from readily available organic materials to facilitate reproducibility of the method in different laboratories; (3) the equipment required to perform this test is relatively inexpensive; and (4) the information obtained on polymer mineralization is vital to the study and development of biodegradable polymeric materials.Guest Editor: Dr. Graham Swift, Rohm & Haas.  相似文献   
6.
Biodegradation of polymeric materials affect a wide range of industries, information on degradability can provide fundamental information facilitating design and life-time analysis of materials. Among the methods currently used in testing, traditional gravimetric and respirometric techniques are tailored to readily degradable polymeric materials mostly and polymer blends with biodegradable components, but they are not applicable to the new generation of engineering polymers which are relatively resistant to biodegradation. However, electrochemical impedance spectroscopy (EIS) has been tested for monitoring biodeterioration of high strength materials and the technique has very high sensitivity. A wide range of materials including electronic insulation polyimides, fiber-reinforced polymeric composites (FRPCs) and corrosion protective polyurethane coatings have been successfully measured under inoculation of degradative microorganisms using EIS. In addition, the mechanism of degradation of high strength polymers is mainly due to the presence of plasticizers in the polymer matrices. The information on various methods discussed in this review is intended to illustrate a suite of methods for those who are interested in testing biodeterioration of polymeric materials under different environmental conditions and in selecting appropriate techniques for specific applications.  相似文献   
7.
An electrochemical impedance spectroscopy (EIS) technique was evaluated for monitoring microbial degradation of electronic packaging polyimides. The microbial inoculum was a mixed culture of fungi isolated previously from deteriorated polyimides. The active fungal consortium comprised Aspergillus versicolor, Cladosporium cladosporioides, and a Chaetomium species. After inoculation, fungal growth on the polyimides resulted in distinctive EIS spectra indicative of polymer insulation failure, which directly related to polymer integrity. Degradation appeared to occur in a number of steps and two distinctive stages in the decline of film resistance were observed in the inoculated EIS cells within the 2 and 10 weeks after inoculation. The early stage of resistance decrease may be related to the ingress of water molecules and ionic species into the polymeric materials, whereas the second stage probably resulted from partial degradation of the polymers by fungal growth on the polymer film. The relationship between changes of impedance spectra and microbial degradation of the polymer was further supported by scanning electron microscopy (SEM) observations of fungi growing on the surface of the inoculated polyimides. Our data indicate that the EIS can be used in detection of early degradation of resistant polymers and polyimides that are susceptible to biodeterioration.  相似文献   
8.
Reduction of hexavalent chromium by ascorbic acid in aqueous solutions   总被引:6,自引:0,他引:6  
Xu XR  Li HB  Li XY  Gu JD 《Chemosphere》2004,57(7):609-613
Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight.  相似文献   
9.

Goal, scope, and background  

Cyanide is commonly found in soils and groundwater complexed with iron as ferro- and ferri-cyanide. It is evident that plants are capable of tolerating, transporting, and assimilating iron cyanides. The objectives of this study were to investigate the influence of temperatures on the removal and bioaccumulation of two chemical forms of iron cyanides by maize seedlings.  相似文献   
10.
Residual cellulose acetate (CA) films with initial degree of substitution (DS) values of 1.7 and 2.5 (CA DS-1.7 and DS-2.5) were recovered from a simulated thermophilic compost exposure and characterized by gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM) to determine changes in polymer molecular weight and DS and to study microbial colonization and surface morphology, respectively. During the aerobic degradation of CA DS-1.7 and CA DS-2.5 films exposed for 7 and 18 days, respectively, the number-average molecular weight (M n) of residual polymer decreased by 30.4% on day 5 and 20.3% on day 16, respectively. Furthermore, a decrease in the degree of substitution from 1.69 to 1.27 (4-day exposure) and from 2.51 to 2.18 (12-day exposure) was observed for the respective CA samples. In contrast, CA films (DS-1.7 and DS-2.5) which were exposed to abiotic control vessels for identical time periods showed no significant changes inM n and DS. SEM photographs of CA (DS-1.7 and DS-2.5) film surfaces after compost exposures revealed severe erosion and corresponding microbial colonization. Similar exposure times for CA films in abiotic control vessels resulted in only minor changes in surface characteristics by SEM observations. The conversion of CA DS-1.7 and DS-2.5 to CO2 was monitored by respirometry. In these studies, powdered CA was placed in a predigested compost matrix which was maintained at 53°C and 60% moisture content throughout the incubation period. A lag phase of 10- and 25-day duration for CA DS-1.7 and DS-2.5, respectively, was observed, after which the rate of degradation increased rapidly. Mineralization of exposed CA DS-1.7 and DS-2.5 powders reported as the percentage theoretical CO2 recovered reached 72.4 and 77.6% in 24 and 60 days, respectively. The results of this study demonstrated that microbial degradation of CA films exposed to aerobic thermophilic laboratory-scale compost reactors not only results in film weight loss but also causes severe film pitting and a corresponding decrease in chainM n and degree of substitution for the residual material. Furthermore, conversions to greater than 70% of the theoretical recovered CO2 for CA (DS 1.7 and 2.5) substrates indicate high degrees of CA mineralization.Guest Editor: Dr. Graham Swift, Rohm & Haas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号