首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   1篇
  2007年   1篇
  2004年   1篇
  1972年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
State-specific detection probabilities and disease prevalence.   总被引:2,自引:0,他引:2  
Investigations of disease dynamics in wild animal populations often use estimated prevalence or incidence as a measure of true disease frequency. Such indices, almost always based solely on raw counts of infected and uninfected individuals, are often used as the basis for analysis of temporal and spatial dynamics of diseases. Generally, such studies do not account for potential differences in observer detection probabilities of host individuals stratified by biotic and/or abiotic factors. We demonstrate the potential effects of heterogeneity in state-specific detection probabilities on estimated disease prevalence using mark-recapture data from previous work in a House Finch (Carpodacus mexicanus) and Mycoplasma gallisepticum system. In this system, detection probabilities of uninfected finches were generally higher than infected individuals. We show that the magnitude and seasonal pattern of variation in estimated prevalence, corrected for differences in detection probabilities, differed markedly from uncorrected (apparent) prevalence. When the detection probability of uninfected individuals is higher than infected individuals (as in our study), apparent prevalence is negatively biased, and vice versa. In situations where state-specific detection probabilities strongly interact over time, we show that the magnitude and pattern of apparent prevalence can change dramatically; in such cases, observed variations in prevalence may be completely spurious artifacts of variation in detection probability, rather than changes in underlying disease dynamics. Accounting for differential detection probabilities in estimates of disease frequency removes a potentially confounding factor in studies seeking to identify biotic and/or abiotic drivers of disease dynamics. Given that detection probabilities of different groups of individuals are likely to change temporally and spatially in most field studies, our results underscore the importance of estimating and incorporating detection probabilities in estimated disease prevalence (specifically), and more generally, any ecological index used to estimate some parameter of interest. While a mark-recapture approach makes it possible to estimate detection probabilities, it is not always practical, especially at large scales. We discuss several alternative approaches and categorize the assumptions under which analysis of uncorrected prevalence may be acceptable.  相似文献   
2.
Within a few years all domestic wastewater effluents in the United States will be subjected to a minimum of a properly operated primary and secondary treatment process. This implies a very high degree of removal of the more readily biologically degradable material as measured by the BOD test. This practice will to a large degree negate the value of the BOD test as a pollution parameter. Organic carbon appears to be a more suitable means for determining the strength of a wastewater or for controlling the operation of physical and chemical treatment processes. Studies were conducted to determine the effect of time of passage on the ratio of organic carbon to BOD, COD and carbohydrate. The ratio was found to vary with both time and the state of the sample. The carbon content was reduced to a lesser degree than the other parameters. Organic carbon content appears to correlate better with COD than with BOD. The efficiency of a chemical precipitation process can be determined on the basis of organic carbon removal.  相似文献   
3.
An extensive study on Se accumulation in a population of Anadara trapezia from a marine lake is reported. The effects of organism mass, gender, reproductive cycle, and season on Se accumulation and tissue distribution were investigated. Analyses showed that gender and reproductive cycle had no significant effect on Se accumulation. A. trapezia showed a strong positive correlation between Se burden and tissue mass. Constant Se concentrations were observed within individual populations but varied spatially with sediment Se concentrations. Se concentrations in tissues decreased from gills > gonad/intestine > mantle > muscle > foot, which remained constant over 12 months, however, significantly lower concentrations were observed in the summer compared to winter. A. trapezia is a good biomonitor for Se, as gender and size do not effect concentration, however, season of collection must be reported if changes in Se bioavailability are to be identified in short term studies, or during intersite comparisons.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号