首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   1篇
环保管理   1篇
综合类   1篇
基础理论   4篇
污染及防治   19篇
评价与监测   4篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2013年   11篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Effect of soil amendments on sorption and mobility of metribuzin in soils   总被引:1,自引:0,他引:1  
Majumdar K  Singh N 《Chemosphere》2007,66(4):630-637
Metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one), is weakly sorbed to soil therefore, leaches easily to lower soil profiles. Soil amendments play a significant role in the management of leaching losses of pesticides. Therefore, present study reports the effect of organic manure and fly ash amendments on metribuzin downward mobility in sandy loam soil columns. Application of animal manure [T-1(OM) and T-2(OM)] and fly ash [T-1(FA) and T-2(FA)] at 2.5% and 5.0% levels increased the metribuzin retention in the soil. Freundlich constant [K(f)(1/n)] values of metribuzin for treatments T-1(OM) and T-2(OM) were 0.70 and 1.11, respectively, which were significantly higher than the value (0.27) in natural soil (T-0). The respective values for treatments T-1(FA) and T-2(FA) were 1.80 and 4.61. Downward mobility of metribuzin was studied in packed soil columns [300 mm (l)x59 mm (i.d.)]. Both the amendments significantly reduced the downward mobility of metribuzin and affected breakthrough time and maximum concentration of metribuzin in the leachate. Leaching losses of metribuzin were decreased from 97% in natural soil (T-0) column to 64% [T-1(OM)] and 42% [T-2(OM)] for animal manure-amended columns and 26% [T-1(FA)] to 100% [T-2(FA)] for fly ash-amended columns, as metribuzin did not leach out of 5% fly ash-amended column. Study indicates that both animal manure and fly ash were quite effective in reducing the downward mobility of metribuzin in packed soil columns of a sandy loam soil.  相似文献   
2.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with K(f) (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The K(f) for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   
3.
Metribuzin, a triazine herbicide, is poorly sorbed in the soils, therefore leaches to lower soil profile. Fly ash amendment, which enhanced metribuzin sorption in soils, may play a significant role in reducing the downward mobility of herbicide. Therefore, the present study reports the effect of Inderprastha fly ash amendment on metribuzin leaching in three soil types. Fly ash was amended at 1, 2 and 5% levels in the upper 15 cm of 30 cm long packed soil columns. Results suggested a significant reduction in the leaching losses of metribuzin in fly ash-amended columns of all the three soil types and effect increased with increase in the level of fly ash. Even after percolating water equivalent to 362 mm rainfall no metribuzin was recovered in the leachate of 5% fly ash-amended columns. Fly ash application affected both metribuzin breakthrough time and its maximum concentration in the leachate. Further, it resulted in greater retention of metribuzin in the application zone and better effect was observed in the organic carbon poor soils.  相似文献   
4.
The effect of two fly ashes as soil amendment on the adsorption–desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K f) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils?+?fly ash mixtures than the metolachlor. The K f values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R?>?0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific.  相似文献   
5.
The present investigation was undertaken to assess the effects of sublethal concentrations of zinc (0.1 and 0.2 mgl(-1)) on the nutritional value of fish Channa punctatus after exposure for 135 days. The parameters studied were, levels of total proteins, glycogen, total lipids, cholesterol and vitamins (A and D) in the muscle. Total proteins, glycogen, total lipids and vitamin D show highly significant decline from day 90 to 135, while cholesterol and vitamin A, show no significant changes upto 105 days. This study signifies a drastic reduction in the nutritive value of fish, which is compounded by the fact that under natural conditions fish are exposed to these levels of zinc for prolonged periods.  相似文献   
6.
Adults Swiss mice were administered 5% solution of textile industry wastewater orally for 25 days and haematological parameters like RBC, WBC, Hb, and PCV were studied. Red cell indices like MCV, MCH and MCHC were calculated. Results indicate significant reduction in RBC, Hb and PCV levels. It is inferred that toxic effluents cause metabolic alteration in erythrocytes and reduce their Hb carrying capacity.  相似文献   
7.
Abstract

Persistence of hexaconazole (2‐(2,4‐dichlorophenyl)‐l‐(lH‐l,2,5‐triazol‐l‐yl) hexan‐2‐ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27°C than at 35°C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro‐organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   
8.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15–92%, whereas with the Kota fly ash an increase in sorption by 13–38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to Kf/Kd values, KFA values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   
9.
Pyrazosulfuron-ethyl, a new herbicide belonging to the sulfonylurea group, is used for weed control in rice crops growing in areas varying from acidic to alkaline soils. This study was undertaken to determine the degradation behaviour of pyrazosulfuron-ethyl in distilled water and buffer solutions at pH 4, 7 and 9. Degradation was pH-dependent and herbicide was least persistent in acidic pH followed by alkaline and neutral pH. The half-life of pyrazosulfuron-ethyl varied from 2.6 days (pH 4) to 19.4 days (pH 7) and half-life in distilled water was comparable to half-life at pH 7 buffer. HPLC analysis of different pH samples showed the formation of three metabolites viz., 5-(aminosulfonyl)-1-methyl-1H-pyrazole-4-carboxylic acid; ethyl 5-(aminosulfonyl)-1-methyl-1H-pyrazole-4-carboxylate and 2-amino-4,6-dimethoxy pyrimidine. The formation of pyrazosulfuron acid [5-([([(4,6-dimethoxy-2 pyrimidinyl)-amino]-carbonyl) amino]-sulfonyl)-1-methyl-1H-pyrazole-4-carboxylic acid] was not observed at any pH. The study indicated that the herbicide was least stable under acidic conditions and the predominant degradation route of pyrazosulfuron-ethyl in water is hydrolysis of sulfonamide linkage.  相似文献   
10.
Atrazine and simazine degradation in Pennisetum rhizosphere   总被引:16,自引:0,他引:16  
The ability of rhizosphere of four plant species to promote the degradation of charcoal-fixed atrazine and simazine in cement blocks of a long-term contaminated soil when mixed with a normal soil at 1:1 ratio was tested. Of the four selected plants viz., rye grass (Lolium perenne), tall fescue (Festuca arundinacae), Pennisetum (Pennisetum clandestinum) and a spring onion (Allium sp.) used in this study, only P. clandestinum was able to survive in herbicide contaminated soil while other plants died within few days after germination/transplanting. Both atrazine and simazine were degraded at a faster rate in contaminated soil planted to P. clandestinum than in unplanted soil. Within 80 days, nearly 45% and 52% of atrazine and simazine, respectively, were degraded in soil planted to P. clandestinum while only 22% and 20% of the respective herbicide were degraded in the unplanted soil. During 80-day experimental period, both microbial biomass and soil dehydrogenase activity were significantly increased (7-fold) in soil planted to P. clandestinum over that in unplanted soil. The suspension of contaminated rhizosphere soil, planted to P. clandestinum exhibited an exceptional capability to degrade both atrazine (300 microg) and simazine (50 microg) in a mineral salts medium over that of non-rhizosphere soil suspension. Results indicate that P. clandestinum, a C4 plant, may be useful for remediation of soils contaminated with atrazine and simazine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号