首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
废物处理   1篇
污染及防治   1篇
  2019年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Permeable reactive barriers (PRBs) have traditionally been constructed via trenching backfilled with granular, long‐lasting materials. Over the last decade, direct push injection PRBs with fine‐grained injectable reagents have gained popularity as a more cost‐efficient and less‐invasive approach compared to trenching. A direct push injection PRB was installed in 2005 to intercept a 2,500 feet (760 meter) long carbon tetrachloride (CT) groundwater plume at a site in Kansas. The PRB was constructed by injecting EHC® in situ chemical reduction reagent slurry into a line of direct push injection points. EHC is composed of slow‐release plant‐derived organic carbon plus microscale zero‐valent iron (ZVI) particles, specifically formulated for injection applications. This project was the first full‐scale application of EHC into a flow‐through reactive zone and provided valuable information about substrate longevity and PRB performance over time. Groundwater velocity at the site is high (1.8 feet per day) and sulfate‐rich (~120 milligrams per liter), potentially affecting the rate of substrate consumption and the PRB reactive life. CT removal rates peaked 16 months after PRB installation with >99% removal observed. Two years post‐installation removal rates decreased to approximately 95% and have since stabilized at that level for the 12 years of monitoring data available after injection. Geochemical data indicate that the organic carbon component of EHC was mostly consumed after 2 years; however, reducing conditions and a high degree of chloromethane treatment were maintained for several years after total organic carbon concentrations returned to background. Redox conditions are slowly reverting and have returned close to background conditions after 12 years, indicating that the PRB may be nearing the end of its reactive life. Direct measurements of iron have not been performed, but stoichiometric demand calculations suggest that the ZVI component of EHC may, in theory, last for up to 33 years. However, the ZVI component by itself would not be expected to support the level of treatment observed after the organic carbon substrate had been depleted. A longevity of up to 5 years was originally estimated for the EHC PRB based on the maximum expected longevity of the organic carbon substrate. While the organic carbon was consumed faster than expected, the PRB has continued to support a high degree of chloromethane treatment for a significantly longer time period of over 12 years. Recycling of biomass and the contribution from a reduced iron sulfide mineral zone are discussed as possible explanations for the sustained reducing conditions and continued chloromethane treatment.  相似文献   
2.
Environmental fate of amitrole: influence of dissolved organic matter   总被引:1,自引:0,他引:1  
In this study the environmental fate of amitrole in terrestrial and aquatic model ecosystems was investigated. Under aerobic conditions mineralization of amitrole is the main degradation pathway. The experiments revealed that the leaching behaviour is low in the presence or the absence of dissolved organic matter (DOM) despite the high water solubility due to a strong binding of amitrole to soil constituents. Under anaerobic conditions the addition of DOM increases the transport of amitrole in soil columns. The tests with water/sediment model ecosystems showed that the mineralization of amitrole is lower in comparison to aerobic soil experiments. Up to 80.6% of the applied 14C-labelled amitrole transfer into the sediment and about 1/3 of this amount formed bound residues, which are not extractable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号