首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   2篇
  2009年   2篇
排序方式: 共有2条查询结果,搜索用时 187 毫秒
1
1.
The Tekran 2537 is widely used for monitoring atmospheric mercury. Although the instrument was designed for sample volumes in excess of 7.5 L, some recent research applications (e.g. aircraft) have used the instrument with significantly smaller collection times and sample volumes – and therefore smaller Hg loadings per cycle – than for which the instrument was designed. We have noticed a potential for non-linear (low) response in the fluorescence peak integration scheme, and thus the reported concentrations when the Hg loading (per cycle) is less than about 10–15 pg, e.g. at around 1 pg loading, the sensitivity is 25% lower than at 10 pg. We determined that although the atomic fluorescence detector was fundamentally linear down to at least 1 pg, the default peak integration scheme appeared to be optimized for > 10–15 pg cycle?1 and so could introduce non-linearity in smaller peaks (i.e. lower mass loadings). For research applications where achieving maximum accuracy and precision of individual, high-time resolution (<5 min) points is crucial, users can mitigate this behavior by modifying the integration parameters or recording the full fluorescence peak and processing the data offline. Two offline methods of quantifying the peak also improved the precision and thus suggest an improvement in the detection limit is possible.  相似文献   
2.
Atmospheric mercury is composed primarily of Hg0 (>95%), but Hg+2 and particle bound mercury are also found in some environments. The three forms of mercury were measured at the Mount Bachelor Observatory beginning in 2005. Using data gathered from 2005 to 2007, 15 periods were identified during which PHg was above the instrument detection limit of 3 pg m?3 for nine or more consecutive hours. Peak PHg concentrations ranged from 6.0 to 44.3 pg m?3. During these events, PHg is strongly correlated with CO and sub-micron aerosol scatter coefficient (typically R2 > 0.6). Our data suggest that the 15 PHg events were likely due to regional wildfires in California and Oregon. Wildfires were identified as the primary PHg source using a combination of air-mass back-trajectories, MODIS satellite data, and chemical and physical tracers of combustion. Slopes of the PHg/σsp and PHg/CO relationships ranged from 0.20 to 1.57 pg (Mm?1)?1 and 0.11 to 0.61 pg m?3 ppb?1, respectively. The range of slopes may indicate different types of burning (e.g. flaming vs. smoldering), differing amounts of chemical processing, different fuel sources, or different physical parameters such as the plume injection height. The slopes provide constraints for the relationship between PHg, CO, and aerosol scatter from wildfires. Asian long-range transport was not a source of PHg but we cannot rule out the possibility of local U.S. industrial sources of PHg for some of the events. Assuming our observations are representative of global fire emissions, we estimate that PHg represents 15% of the total mercury released from wildfires and is a source of PHg comparable to anthropogenic sources.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号