首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
废物处理   2篇
环保管理   2篇
基础理论   3篇
污染及防治   6篇
评价与监测   1篇
社会与环境   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Background, aim and scope

In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues.

Study site

The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km2. About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite.

Methods

The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis.

Results and discussion

The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L−1, Fe 100 mg L−1, Cu 2.9 mg L−1, Cd 1.4 mgL−1 as well as those of SO4 up to 2.2 g L−1. In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity.

Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater.

Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid–base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future.

The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples’ opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations.

Conclusions

Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results.

Recommendations and perspectives

The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.

  相似文献   
2.
An international cooperative project on distribution of ozone in the Carpathian Mountains, Central Europe was conducted from 1997 to 1999. Results of that project indicated that in large parts of the Carpathian Mountains, concentrations of ozone were elevated and potentially phytotoxic to forest vegetation. That study led to the establishment of new long-term studies on ecological changes in forests and other ecosystems caused by air pollution in the Retezat Mountains, Southern Carpathians, Romania and in the Tatra Mountains, Western Carpathians on the Polish-Slovak border. Both of these important mountain ranges have the status of national parks and are Man & the Biosphere Reserves. In the Retezat Mountains, the primary research objective was to evaluate how air pollution may affect forest health and biodiversity. The main research objective in the Tatra Mountains was to evaluate responses of natural and managed Norway spruce forests to air pollution and other stresses. Ambient concentrations of ozone (O(3)), sulfur dioxide (SO(2)), nitrogen oxides (NO(x)) as well as forest health and biodiversity changes were monitored on densely distributed research sites. Initial monitoring of pollutants indicated low levels of O(3), SO(2), and NO(x) in the Retezat Mountains, while elevated levels of O(3) and high deposition of atmospheric sulfur (S) and nitrogen (N) have characterized the Tatra Mountains. In the Retezat Mountains, air pollution seems to have little effect on forest health; however, there was concern that over a long time, even low levels of pollution may affect biodiversity of this important ecosystem. In contrast, severe decline of Norway spruce has been observed in the Tatra Mountains. Although bark beetle seems to be the immediate cause of that decline, long-term elevated levels of atmospheric N and S depositions and elevated O(3) could predispose trees to insect attacks and other stresses. European and US scientists studied pollution deposition, soil and plant chemistry, O(3)-sensitive plant species, forest insects, and genetic changes in the Retezat and Tatra Mountains. Results of these investigations are presented in a GIS format to allow for a better understanding of the changes and the recommendations for effective management in these two areas.  相似文献   
3.
Ambient ozone (O(3)) concentrations in the forested areas of the Central and Eastern European (CEE) mountains measured on passive sampler networks and in several locations equipped with active monitors are reviewed. Some areas of the Carpathian Mountains, especially in Romania and parts of Poland, as well as the Sumava and Brdy Mountains in the Czech Republic are characterized by low European background concentrations of the pollutant (summer season means approximately 30 ppb). Other parts of the Carpathians, especially the western part of the range (Slovakia, the Czech Republic and Poland), some of the Eastern (Ukraine) and Southern (Romania) Carpathians and the Jizerske Mountains have high O(3) levels with peak values >100 ppb and seasonal means approximately 50 ppb. Large portions of the CEE mountain forests experience O(3) exposures that are above levels recommended for protection of forest and natural vegetation. Continuation of monitoring efforts with a combination of active monitors and passive samplers is needed for developing risk assessment scenarios for forests and other natural areas of the CEE Region.  相似文献   
4.
The effects of air pollution on the genetic structure of Norway spruce, European silver fir and European beech were studied at four polluted sites in Slovakia, Romania and Czech Republic. In order to reduce potential effects of site heterogeneity on the health condition, pair-wise sampling of pollution-tolerant and sensitive trees was applied. Genotypes of sampled trees were determined at 21 isozyme gene loci of spruce, 18 loci of fir and 15 loci of beech. In comparison with Norway spruce, fewer genetic differences were revealed in beech and almost no differentiation between pollution-tolerant and sensitive trees was observed in fir. In adult stands of Norway spruce, sensitive trees exhibited higher genetic multiplicity and diversity. The decline of pollution-sensitive trees may result thus in a gradual genetic depletion of pollution-exposed populations of Norway spruce through the loss of less frequent alleles with potential adaptive significance to altered stressing regimes in the future. Comparison of the subsets of sensitive and tolerant Norway spruce individuals as determined by presence or absence of discolorations ("spruce yellowing") revealed different heterozygosity at 3 out of 11 polymorphic loci.  相似文献   
5.
It is necessary to develop a medical waste management system featuring nonburning treatment and safety functions for small medical institutions. In this article, the development of a waste management system without oxygen injection was achieved by means of hybrid heating using microwave energy and an electric heater. The shape of the microwave reactor was a rectangular parallelepiped with a volume of about 0.1 m3. In the experimental setup, microwave energy (2.45 GHz, about 800 W) was injected from the top of the reactor, while the heater (about 1 kW) was located at the bottom. Heat insulators were set into all the walls of the reactor. The gases generated in the system were vented through water and activated carbon. Five paper-based diapers with absorbed water were used as the waste sample. For the evaluation of performance, the reduction rate was defined as the ratio (in percent) of the weight before and after treatment. The reduction rate as a function of treatment time and the effect of the position of the waste in the reactor on the reduction rate and the uniformity of treatment were examined for about 3 kg of waste. It was found that the reduction rate reached as low as 4.2% at 3 h and then 3% after 8 h. The treated profile strongly depended on the position of the waste in the reactor. In particular, it was clarified that a metal cylindrical enclosure and a needle electrode played an important role in attaining uniform treatment of the waste.  相似文献   
6.

Background

This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey.

Results

Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75–100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of <?40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (=?above-average) or low (=?below-average) correlation coefficients.

Conclusions

LDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites.
  相似文献   
7.
In view of growing interest in understanding how biodiversity affects ecosystem functioning, we investigated effects of riparian plant diversity on litter decomposition in forest streams. Leaf litter from 10 deciduous tree species was collected during natural leaf fall at two locations (Massif Central in France and Carpathians in Romania) and exposed in the field in litter bags. There were 35 species combinations, with species richness ranging 1-10. Nonadditive effects on the decomposition of mixed-species litter were minor, although a small synergistic effect was observed in the Massif Central stream where observed litter mass remaining was significantly lower overall than expected from data on single-species litter. In addition, variability in litter mass remaining decreased with litter diversity at both locations. Mean nitrogen concentration of single- and mixed-species litters (0.68-4.47% of litter ash-free dry mass) accounted for a large part of the variation in litter mass loss across species combinations. For a given species or mixture, litter mass loss was also consistently faster in the Massif Central than in the Carpathians, and the similarity in general stream characteristics, other than temperature, suggests that this effect was largely due to differences in thermal regimes. These results support the notion that decomposition of litter mixtures is primarily driven by litter quality and environmental factors, rather than by species richness per se. However, the observed consistent decrease in variability of decomposition rate with increasing plant species richness indicates that conservation of riparian tree diversity is important even when decomposition rates are not greatly influenced by litter mixing.  相似文献   
8.
Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.  相似文献   
9.
Used batteries contain numerous metals in high concentrations and if not disposed of with proper care, they can negatively affect our environment. These metals represent 83% of all spent batteries and therefore it is important to recover metals such as Zn and Mn, and reuse them for the production of new batteries. The recovery of Zn and Mn from used batteries, in particular from Zn–C and alkaline ones has been researched using hydrometallurgical methods. After comminution and classification of elemental components, the electrode paste resulting from these processes was treated by chemical leaching. Prior to the leaching process the electrode paste has been subjected to two washing steps, in order to remove the potassium, which is an inconvenient element in this type of processes. To simultaneously extract Zn and Mn from this paste, the leaching method in alkaline medium (NaOH solution) and acid medium (sulphuric acid solution) was used. Also, to determine the efficiency of extraction of Zn and Mn from used batteries, the following variables were studied: reagents concentration, S/L ratio, temperature, time. The best results for extraction yield of Zn and Mn were obtained under acid leaching conditions (2 M H2SO4, 1 h, 80 °C).  相似文献   
10.
Despite their size, small farm ponds are important features in many landscapes. Yet hydrographical databases often fail to capture these ponds, and their impacts on watershed processes remain unclear. For a 230‐km2 portion of central Texas, United States (U.S.), we created a historical inventory of ponds and quantified the accuracy of automated detection methods under varying drought conditions. In addition, we documented pond dredging/enlargement events and identified sites that had been abandoned. We also analyzed sediment cores from downstream reservoirs to track changes in watershed sediment transport. Over 75 years, pond densities increased more than 350% — to among the highest documented in the U.S. — and the ability of automated methods to detect these ponds was highly dependent on drought severity (R2 = 0.96). Approximately 5% of ponds present in the 1950s were no longer present in 2012, while 33% were dredged between 1937 and 2012. Downstream reservoir sedimentation has decreased by an average of 55% as ponds have increased in number. These findings suggest that small ponds and the maintenance of trapping efficiency have large‐scale impacts on sediment dynamics. Accurately accounting for these storage effects is vital to water resource planning efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号