首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
综合类   1篇
基础理论   10篇
污染及防治   2篇
评价与监测   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2012年   2篇
  2003年   1篇
  1989年   3篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Dynamics of the surface layer in different liquids is examined by means of infrared thermography of the surface and simultaneous velocity fields measurements using surface and infrared Particle Image Velocimetry. This technique allows measurements and comparison of two velocity fields—at the surface and at small depth about 50–200 μm. In distilled water the velocity fields at the surface and at small depth exhibit significant dissimilarity. The flow field below the surface is essentially 3D, whereas the surface flow is characterized by vanishing 2D divergence of velocity, indicating predominantly planar motion. In contrast, in ethanol–butanol mixture two velocity fields are well correlated, both corresponding to 3D flow with continuous surface renewal. Thermal patterns, observed at the surface, and the flow field structure in different liquids are associated with different boundary conditions for velocity at the surface. Water surface is seldom renewed, which inhibits heat and mass exchange between the liquid and atmosphere. However, absence of vertical advection also enables organisms to live within the surface layer, to stand and walk on the free surface. This is illustrated by the difficulties a water strider faces on the surface of ultrapure water, which exhibits Marangoni convection.  相似文献   
2.

The retention of heavy metal (HM) was studied in root and rhizomes (BLG), stems (ST), and leaves (LF) of Phragmites australis (common reed) seedlings collected from different locations, differing in the scale of anthropogenic interference. The analysis includes the reference samples of sediments in uncontaminated lake Garczonki and contaminated roadside ditch in Cieplewo. The concentrations of Zn, Cu, Pb, Cd, Ni, and Cr were analyzed in plant tissues and sediments using the atomic absorption spectrometry and inductively coupled plasma mass spectrometry. The general assessment of sediments collected in the Garczonki lake showed a good environmental status; while in the roadside ditch in Cieplewo, the sediments were considerably polluted with HM. In the first stage of plant growth, all of the analyzed HMs are mainly inhibited by BLG system. The decreasing trend of elements was as follows: BLG > ST > LF. The organs followed different decreasing trends of HM concentration; the trend Zn > Cu > Ni > Cr > Pb > Cd was found in ST and LF for the Garczonki lake seedlings and for BLG and LF for the roadside ditch in Cieplewo seedlings. Zn showed the highest concentration, while Cd the lowest concentration in each of the examined organs. The bioaccumulation factor indicated the higher mobility of HM in seedlings in the Garczonki lake than in the roadside ditch in Cieplewo. The morphological studies suggest the good state and health of seedling from both sites; however, the reduction of root hair surface was observed for the roadside ditch seedlings. The anatomical studies present changes in the size of the nucleus and count of chloroplasts in LF. No reaction on HM contamination sediments in the seedlings from the roadside ditch in Cieplewo in the aerenchyma was noted. Potentially, both types of seedlings can be used to decontaminate environments rich in HM. However, the level of HM absorbed by seedlings (in the first stage of growth) should be considered due to the behavior in the target phytoremediation site.

  相似文献   
3.
Ramus K  Kopinke FD  Georgi A 《Chemosphere》2012,86(2):138-143
The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.  相似文献   
4.
Two vegetative clones (designated 11/85 and 7/86 in accordance with month/year of collection) of the chlorophyte macroalga Ulva rotundata were collected in the vicinity of Beaufort, North Carolina, USA. Each was grown in an outdoor continuous-flow system in summer (>-20°C) of 1986 and late winter (10° to 17°C) of 1987 in graded scalar quantum irradiances ranging from 9 to 100% of full sunlight, with and without NH 4 + enrichment. The pigment content of plants from each irradiance was determined following 4 to 8 d sunny weather. Chlorophyll (chl) and carotenoid content were inverse curvilinear functions of irradiance. The chl a:b and carotenoid: chl ratios were positively related to irradiance. The close nonlinear relationship between chl (a+b) and the chl a:b ratio was independent of clone, temperature or NH 4 + -enrichment. Chl (a+b) content was linearly correlated with light-regulated growth rate in the summer, but showed a marked hysteresis in the relationship in winter due to photoinhibition. The photon growth yield (PGY, i.e., the biomass yield per unit absorbed light) was maximal for plants grown at slightly subsaturating irradiances, and dropped off sharply at lower irradiances. At higher irradiances, PGY declined gradually in summer and markedly in winter. Light absorption exceeded growth needs at full sunlight, suggesting that U. rotundata was incapable of further reducing its pigment content when growth rate was light-saturated. This, along with the linear chlgrowth relationship, is consistent with photosynthetic feedback regulation of chl content. Regardless of the mechanism, chl regulation may operate within the constraints of a resource tradeoff between light harvesting and carboxylation capacities, such that pigmentation must be optimized rather than maximized.  相似文献   
5.
Two vegetative clones (designated 11/85 and 7/86 in accordance with month/year of collection) of the green macroalga Ulva rotundata were collected in the vicinity of Beaufort, North Carolina, USA. Each was grown in an outdoor continuous-flow system in summer (20°C) of 1986 and late winter (10° to 17°C) of 1987, in irradiances ranging from 9 to 100% of full sunlight, with and without NH 4 + enrichment. Continuous enrichment of influent estuarine water (dissolved inorganic nitrogen 2 M, N:P5) to 8–12 M NH 4 + had only a slight effect on growth rate. Temperature changes of 2 to 3°C had a much greater effect. Prolonged exposure to a given daily irradiance resulted in acclimation, exposure to a given daily irradiance resulted in acclimation, indicated by faster growth of conditioned plants relative to those transferred from a different irradiance. Most of the difference in growth rates between transferred and control plants was attributed to differences in thallus absorptance. Growth was photoinhibited above 40% sunlight at temperatures below 15°C, but not above 20°C. Following interday irradiance transfers, thallus percent dry weight changed in a manner that suggests different response times for photosynthesis and cell division.  相似文献   
6.
We compared the effect of habitat and water depth on the light-harvesting pigment content for Ascophyllum nodosum and Fucus vesiculosus at two near-shore stations in Long Island Sound (USA). Excised pieces of seaweeds were attached at depth intervals to a vertically buoyed line, and left in situ for 7 days. For comparison, fronds were collected from sun and shade habitats in the littoral zone. The three major antenna (light-harvesting) pigments increased in concentration with depth or shade. Chlorophyll c to a ratios remained stable at about 0.2. Fucoxanthin to chlorophyll a ratios decreased by 20 to 30% with depth or shade. Although pigment composition for the two rockweed species was equivalent, the maximum photosynthetic performance of F. vesiculosus exceeded that of A. nodosum by a factor of 2, while the compensation depths for 4 m-adapted A. nodosum and F. vesiculosus under natural limiting light conditions were equivalent. Plants held at 4 m had higher photosynthetic rates compared with plants held at 0 m, no matter the depth of measurement. Indirect evidence indicates that the enhanced photosynthesis of 4 m-adapted plants is due not only to higher concentrations of antenna pigments but to other physiological factors as well. We conclude that the clearly delineated vertical distribution of these two canopy species, the F. vesiculosus zone over the A. nodosum zone, is not determined by light quantity or quality, but by biotic factors as evidenced by the experiments of Menge which are cited herein.  相似文献   
7.
The silk weave spun by hornet larvae before undergoing pupal metamorphosis is composed of fibers and sheets, both containing symbiotic bacteria. The bacteria are secreted from the silk gland and are glued to the secreted silk, which is made up of amino-acid polymers. In the dark, it possesses at first an electric current amounting to several hundred nanoamperes (nA) (i.e., a thermoelectric property), and a high electric capacitance of up to several milliFarads (mF). This electrical charge is used gradually by the developing pupa. The symbiotic bacteria penetrate through slits in the coat of the silk fibers to the core or into pockets in the sheets, where they gradually digest parts of the silk weave, thereby nullifying its mechanical properties and facilitating in due time the egress of the imago from the puparium.  相似文献   
8.
The seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae) were grown in an outdoor continuous-flow system at both ambient incident light (I0) and 0.13 I0. During the winter, both species accumulated substantial soluble nitrogen reserves (up to 1020 g-at N·g dry wt-1 in G. foliifera and 630 g-at N·g dry wt-1 in Ulva sp.). The rate at which these N reserves were depleted was proportional to the growth rate. Seaweeds grown at 0.13 I0 had lower growth rates and higher levels of soluble tissue N than plants grown at I0. During the spring-summer growing season, peaks in tissue N followed nutrient peaks in the ambient seawater. Ulva sp. had higher nutrient uptake and growth rates than G. foliifera and showed greater fluctuations in soluble tissue N. This may characterize opportunistic seaweed species with high biomass turnover rates. At I0, the levels of starch (up to 340 mg·g dry wt-1 in G. foliifera and 170 mg·g dry wt-1 in Ulva sp.) were highest during the spring and summer. During this period, fluctuations in starch content were inversely related to growth rate and soluble tissue N. Seaweeds grown at 0.13 I0 did not accumulate starch. Neither species was found to overwinter with starch reserves.  相似文献   
9.
We conducted a study of the relationship between changes in photosynthetic pigment content and water depth in Great Harbor near Woods Hole, Massachusetts, USA, on the green algae Ulva lactuca and Codium fragile and the red algae Porphyra umbilicalis and Chondrus crispus. A calibrated underwater photometer equipped with spectral band filters measured light attenuation by the water column. The depth required for a 10-fold diminution of photon flux was 3.6, 5.3, 6.0 and 6.0 m for red, blue, yellow and green light, respectively. Seaweeds were attached to vertically buoyed lines and left to adapt for 7 days; then, with their positions reversed, they were allowed to readapt for 7 days. All species showed greater photosynthetic pigment content with increased depth. Further, the ratio of phycobiliproteins and chlorophyll b to chlorophyll a increased with depth. Changes in pigment content were reversible and occurred in the absence of cell division. There was a net loss of pigments near the surface (high irradiance), and subsequent synthesis when seaweeds were transferred to a position deep in the water column (low irradiance). In contrast, seaweeds which were found in intertidal habitats changed only their pigment concentration, and not pigment ratio, a phenomena analogous to higher plant sun and shade adaptation. Therefore, seaweeds modify their photon-gathering photosynthetic antennae to ambient light fields in the water column by both intensity adaptation and complementary chromatic adaptation.  相似文献   
10.
Rates of primary production and compensation depths were determined for Codium fragile by 3 different measurements: (1) growth rate; (2) rate of 14C-fixation; (3) rate of O2 evolution. The radiocarbon assay employed liquid scintillation counting of homogeneous suspensions of seaweed tissue in gelled fluor. Maximum rates of primary production ranged between 2.6 and 3.9 mg C-fixed/g dry weight/h. The compensation depth is regulated by local turbidity, as is vertical distribution. All 3 methods for the determination of compensation depth, when used simultaneously, gave the same value. Chlorophyll levels were found to vary inversely with available light, hence depth, whereas starch levels were found to vary directly with available light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号