首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
污染及防治   5篇
评价与监测   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 499 毫秒
1
1.
Shareef K  Shaw G 《Chemosphere》2008,72(1):8-15
Agriculture in northern Iraq (Kurdistan) relies on the widespread use of pesticides to promote crop performance. Over-application of many pesticides is commonplace, however, and may compromise soil and water quality, and ultimately human health, within the region. The aim of this study was to investigate the sorption-desorption kinetics and equilibrium partitioning of two selected pesticides in agricultural soils from northern Iraq. This was achieved by fitting a dual-rate sorption-desorption model to time-dependent data obtained from batch experiments. 2,4-D and carbaryl were selected for scrutiny since both are in common use in the region. Six agricultural soils, sampled around the city of Erbil, were investigated. These were low in organic carbon (OC) compared with many agricultural soils from more temperate regions. However, there was still a clear trend of increasing sorption of both 2,4-D and carbaryl with increasing % OC. In the case of both compounds, fast and slow adsorption rate coefficients and 48 h experimental K(d) values were positively correlated with % OC. It was assumed that K(OC) would provide a simple and reliable predictor of K(d). However, while this assumption holds true for short-term (48 h) experimental data, longer-term sorption in some soils (as indicated by theoretical K(d) values estimated from kinetic parameters in our study) appears to be under-predicted by K(OC) alone. The data presented here provide a useful starting point for further site-specific investigations of pesticide impacts in the Kurdistan region of Iraq.  相似文献   
2.
Comparison of black carbon (BC) measurements obtained by two methods was performed for aerosols samples collected on Whatman 41 (W-41) filters, using an optical method (Magee Scientific Optical Transmissometer Model OT-21) and a thermal-optical method (Sunset Laboratory Thermal-optical analyzer). Samples were collected from four sites: Albany (a small urban site, NY), Antalya (coastal site, Turkey), Whiteface Mountain (remote site, NY) and Mayville (rural site, NY). At Albany, comparison between the two methods showed excellent agreement; a least-squares regression line yielded a slope of 1.02, and r2 = 0.88. Similar comparisons at Antalya (slope of 1.02, r2 = 0.5) and Whiteface Mountain (slope of 0.92 and r2 = 0.58) also gave very good relationship. At Mayville, the relationship between the two methods yielded somewhat lower regression: a slope of 0.75, and r2 = 0.44. The data from the four locations, when plotted together, yielded an excellent agreement: a slope of 0.91, and r2 of 0.84. Based on our measurements, it appears that optical measurement using the OT-21 can be successfully applied to determination of BC in W-41 filters. However, because of the variability in the chemical composition of BC aerosol at different locations, it is suggested that the calibration of OT-21 when using W-41 filters should be performed with a statistically significant numbers of samples for specific sites.  相似文献   
3.
An improved chemical oxidation pretreatment method has been developed for the determination of elemental carbon (EC) [also known as black carbon (BC) or soot] in lake sediments, using a thermal–optical transmittance (TOT) carbon analyzer. The method employs six steps: (1) removal of carbonates by treatment with HCl; (2) removal of silicates by treatment with HF + HCl; (3) removal of any remaining carbonates by treatment with HCl; (4) removal of humic acids by treatment with NaOH; and (5) oxidation of kerogens by K2Cr2O7 + H2SO4. A critical step of zinc chloride treatment was added; this apparently changes EC's morphology and enhances retention on quartz fiber filter, resulting in several-fold increased chemical yield. EC was determined using the TOT method with modified combustion timings. Carbon black (acetylene) and four NIST standard reference materials (SRMs) were used for quality control, and to assess the precision of the analysis. The EC recoveries from 18 carbon black samples varied from 90 to 111%, with a mean value of 99 ± 6%. The high EC recoveries confirmed the validity of the method. Char reference materials (i.e. chestnut wood and grass char) were used to determine potential contribution to EC in our measurements. The char references containing about 700 mg total organic carbon (OC) contributed ~1.5% EC. The measured EC values from four NIST standards were 17.0 ± 0.6, 24.2 ± 3.2, 5.6, and 1.9 ± 0.1 mg gdw?1 for SRM-1648, SRM-1649a, SRM-1941b and SRM-8704, respectively. These values in SRMs were in agreement (<±4%) with the previously reported values. The method was applied to determine the EC in sediment cores from an urban lake and a remote mountain lake in the Northeastern United States. The EC concentrations in two lakes mimic the model EC emissions from the industrial revolution in United States.  相似文献   
4.
In this work, we investigated the transport and burial of triclosan and its methylated derivative, in surface sediments near the mouth of Barker Inlet in South Australia. The most likely source of this commonly used bactericide to the area is a wastewater outfall discharging at the confluence of the inlet with marine waters. Triclosan was detected in all samples, at concentrations (5-27 μg kg(-1)) comparable to values found in other surface sediments under the influence of marine wastewater outfalls. Its dispersal was closely associated with fine and organic-rich fractions of the sediments. Methyl-triclosan was detected in approximately half of the samples at concentrations <11 μg kg(-1). The occurrence of this compound was linked to both wastewater discharges and biological methylation of the parent compound. Wastewater-borne methyl-triclosan had a smaller spatial footprint than triclosan and was mostly deposited in close proximity to the outfall. In situ methylation of triclosan likely occurs at deeper depositional sites, whereas the absence of methyl-triclosan from shallower sediments was potentially explained by photodegradation of the parent compound. Based on partition equilibrium, a concentration of triclosan in the order of 1 μg L(-1) was estimated in sediment porewaters, a value lower than the threshold reported for harmful effects to occur in the couple of species of marine phytoplankton investigated to date. Methyl-triclosan presents a greater potential for bioaccumulation than triclosan, but the implications of its occurrence to aquatic ecosystem health are difficult to predict given the lack of ecotoxicological data in the current literature.  相似文献   
5.
The persistence of contaminants entering the environment through land application of biosolids needs to be understood to assess the potential risks associated. This study used two biosolids treatments to examine the dissipation of four organic compounds: 4-nonylphenol, 4-t-octylphenol, bisphenol A and triclosan, under field conditions in South Australia. The pattern of dissipation was assessed to determine if a first-order or a biphasic model better described the data. The field dissipation data was compared to previously obtained laboratory degradation data. The concentrations of 4-nonylphenol, 4-t-octylphenol and bisphenol A decreased during the field study, whereas the concentration of triclosan showed no marked decrease. The time taken for 50% of the initial concentration of the compounds in the two biosolids to dissipate (DT50), based on a first-order model, was 257 and 248 d for 4-nonylphenol, 231 and 75 d for 4-t-octylphenol and 289 and 43 d for bisphenol A. These field DT50 values were 10- to 20-times longer for 4-nonylphenol and 4-t-octylphenol and 2.5-times longer for bisphenol A than DT50 values determined in the laboratory. A DT50 value could not be determined for triclosan as this compound showed no marked decrease in concentration. The biphasic model provided a significantly improved fit to the 4-t-octylphenol data in both biosolids treatments, however, for 4-nonylphenol and bisphenol A it only improved the fit for one treatment. This study shows that the use of laboratory experiments to predict field persistence of compounds in biosolids amended soils may greatly overestimate degradation rates and inaccurately predict patterns of dissipation.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号