首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   1篇
  国内免费   3篇
安全科学   10篇
废物处理   25篇
环保管理   25篇
综合类   51篇
基础理论   40篇
污染及防治   138篇
评价与监测   46篇
社会与环境   21篇
灾害及防治   1篇
  2023年   7篇
  2022年   13篇
  2021年   17篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   24篇
  2015年   13篇
  2014年   17篇
  2013年   40篇
  2012年   27篇
  2011年   28篇
  2010年   22篇
  2009年   18篇
  2008年   20篇
  2007年   12篇
  2006年   26篇
  2005年   11篇
  2004年   19篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   2篇
  1986年   1篇
  1985年   1篇
  1964年   1篇
排序方式: 共有357条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Bamboo presents physical and mechanical characteristics, which turn it an alternative option for product development, replacing native or reforested wood. The sustainability assessment of a Dendrocalamus Giganteus species plantation in Brazil through the emergy methodology evidences a great weight of renewable (30% sej/sej) and human labour contributions (33% sej/sej). These contributions account for the great interface with environment and to the intensive work, respectively. The transformity value of bamboo production is 2.42E + 04 sej/J. The influence human labour has on the total emergy flow and on indicators is evaluated by taking into account different country locations (Brazil, Australia and China). Thus, a different transformity value for labour is assumed for each country. A ranking based on emergy sustainability index (ESI) values shows that bamboo production in China was the first placed, followed by Brazil and Australia (values of 1.18, 0.50 and 0.09, respectively). The insertion of indirect renewability embedded in labour results in the ranking modification, leading to plantation in Brazil in the first place, followed by the Australian and Chinese ones. The relative position of the bamboo systems is visualized in the ternary diagram expressed in terms of emergy. In an attempt to explore the relationship between sustainability and time, a graphic of ESI vs. global productivity is discussed in terms of a prospective evaluation. Indirect support areas of the bamboo production are calculated as a way to evaluate the sustainability-space relationship.  相似文献   
6.
7.
Environmental Geochemistry and Health - Thermal caves represent an environment characterized by unique chemical/physical properties, often used for treatment and care of musculoskeletal,...  相似文献   
8.
Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected “raw” and primarily “engineered” (“composite”) wood wastes.The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in “engineered” wood wastes as compared with “raw” wood wastes; and relatively high energy content values of “engineered” wood wastes (ranging on the whole from 3675 to 5105 kcal kg−1 for HHV, and from 3304 to 4634 kcal kg−1 for LHV).The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in “engineered” wood burning tests of pyrroles and amines, as well as the additional presence (as compared with “raw” wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon.Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in “engineered” wood burning tests as compared with “raw” wood burning test; and considerable generation of the respirable PM1 fraction during incomplete industrial wood burning.  相似文献   
9.
The presence of ceramic glass contaminants in glass recycling plants reduces production quality and increases production costs. The problem of ceramic glass inspection is related to the fact that its detectable physical and pictorial properties are quite similar to those of glass. As a consequence, at the sorting plant scale, ceramic glass looks like normal glass and is detectable only by specialized personnel. In this paper an innovative approach for ceramic glass recognition, based on imaging spectroscopy, is proposed and investigated. In order to define suitable inspection strategies for the separation between useful (glass) and polluting (ceramic glass) materials, reference samples of glass and ceramic glass presenting different colors, thicknesses, shapes and manufacturing processes have been selected. Reflectance spectra have been obtained using two equipment covering the visible and near infrared wavelength ranges (400-1000 and 1000-1700 nm). Results showed as recognition of glass and ceramic glass is possible using selected wavelength ratios, in both visible and near infrared fields.  相似文献   
10.
This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号