首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   8篇
废物处理   3篇
环保管理   4篇
综合类   6篇
基础理论   4篇
污染及防治   14篇
评价与监测   4篇
灾害及防治   2篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   2篇
  2009年   4篇
  2008年   1篇
  1999年   1篇
  1988年   2篇
排序方式: 共有37条查询结果,搜索用时 46 毫秒
1.

Ambient air pollution is one of the most significant environmental problems, and many individuals around the world die each year prematurely from diseases caused by this type of pollution. PM2.5 can transpire deep to the lungs and induce some dangerous health effects in humans. In this study, the health effects of long-term PM2.5 were estimated on expected life remaining (ELR) and years of life lost (YLL) indices in Ahvaz city during the years 2008–2017 using the AirQ+ software developed by WHO. Values obtained from the PM2.5 averaging, ELR, and YLL data were processed for the whole population in the age range of 0–64 and over 64. These values were entered into AirQ+ software. The mean annual concentration of PM2.5 was highly variable, with the highest concentration being 70.72 μg/m3 in 2010 and the lowest 41.97 μg/m3 in 2014. In all studied years, the concentration of PM2.5 with the variations between 4.2 to 7.07 times was higher than the WHO standard (10 μg/m3). Ahvaz city also did not experience any clean day during the 10-year period, and in 2010, there were 47 very unhealthy days and 27 dangerous days, i.e., the highest number of very unhealthy and dangerous days during the period. The results estimated that the highest and lowest YLL in the next 10 years for all ages groups would be 137,760.49 (2010) and 5035.52 (2014), respectively. Also, the ELR index was lower than the Iranian standard and EPA which was significantly correlated with the concentration of PM2.5.

  相似文献   
2.
阐述了安全生产信息化建设对安全生产带来的重大变革,以及存在的信息化环境、技术、质量等方面的信息不对称,对产生失衡的原因进行分析,提出合理的解决方案。  相似文献   
3.
Background, aim and scope

In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues.

Study site

The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km2. About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite.

Methods

The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis.

Results and discussion

The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L−1, Fe 100 mg L−1, Cu 2.9 mg L−1, Cd 1.4 mgL−1 as well as those of SO4 up to 2.2 g L−1. In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity.

Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater.

Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid–base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future.

The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples’ opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations.

Conclusions

Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results.

Recommendations and perspectives

The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.

  相似文献   
4.
In a proton exchange membrane electrolyzer cell (PEMEC), liquid/gas diffusion layer (LGDL) is expected to transport electrons, heat, and reactants/products to and from the catalyst layer with minimum voltage, current, thermal, interfacial, and fluidic losses. In addition, carbon materials, which are typically used in PEM fuel cells (PEMFCs), are unsuitable in PEMECs due to the high ohmic potential and highly oxidative environment of the oxygen electrode. In this study, a set of titanium gas diffusion layers with different thicknesses and porosities are designed and examined coupled with the development of a robust titanium bipolar plate. It has been found that the performance of electrolyzer improves along with a decrease in thickness or porosity of the anode LGDL of titanium woven meshes. The ohmic resistance of anode LGDL and contact resistance between anode LGDL and the anode catalyst play dominant roles in electrolyzer performance, and better performance can be obtained by reducing ohmic resistance. Thin titanium LGDLs with straight-through pores and optimal pore morphologies are recommended for the future developments of low-cost LGDLs with minimum ohmic/transport losses.  相似文献   
5.
6.
人工浮床对汾江河水质净化的研究   总被引:1,自引:0,他引:1  
对佛山市汾江河内布置浮床的水域的7个断面进行采样监测,分析了布置浮床侧与未布置浮床侧各水质指标的差异,以考察人工浮床对汾江河水质的净化效果。同时比较了圆币草、水罂粟、梭鱼草、狐尾草、美人蕉和鸢尾6种浮床植物的生物量和氮磷吸收量。结果表明,布置人工浮床一侧的水质TN、TP、COD和NH4+-N含量均显著低于未布置浮床一侧的水质,表明人工浮床对水体水质的有净化效果。总面积约4 900 m2的浮床植物经过3个月的生长,从水体中共吸收了192.5 kg的氮和76.1 kg的磷。6种浮床植物中,狐尾草的净增生物量最高,达到64.2 kg/m2;圆币草次之,为62.2 kg/m2。狐尾草和圆币草对氮磷的吸收能力在6种植物中处于较高水平,每平方米狐尾草和圆币草从水体中分别吸收了51.61g氮、19.79 g磷和46.90 g氮、22.93 g磷。综合比较得出,狐尾草和圆币草在生物量和氮磷吸收量上均保持在较高水平,是较好的浮床植物。本研究为人工浮床在南方类似河流中的应用及植物选择提供了参考依据。  相似文献   
7.
湿法净化黑烟中炭黑颗粒物的关键在于降低吸收液的表面张力并以高性能絮凝剂使其从溶液中絮凝、沉降以利于分离。选用十六烷基三甲基溴化胺(CTAB)为主要表面活性剂,使之与十二烷基苯磺酸钠(SDBS)和月桂醇聚氧乙烯(9)醚(AEO-9)进行复配实验,研究了复配液的表面张力,再向最低表面张力的复配表面活性剂溶液中投加絮凝剂聚合氯化铝(PAC)和聚丙烯酰胺(PAM),探讨絮凝剂的添加对黑烟颗粒沉降和絮凝的影响.实验结果表明:同时添加表面活性剂CTAB,SDBS和PAC,并使之浓度分别为0.5 mmol/L,0.4 mmol/L和200 mg/L时,炭黑颗粒的沉降效果最好,沉降率高达94%,且絮凝体较大,沉降时间仅为2 min。  相似文献   
8.
9.
The objective of the project was to identify all hazardous waste sites in Burlington County, New Jersey that could be detected on existing, medium-scale aerial photographs of the county. The complete set of over 1000 black- and-white stereopairs at a scale of 1:12,000 was carefully examined for initial identification of possible sites. All suspicious sites were examined again on color transparencies of the county at the same 1:12,000 scale. Out of the 1094 black- and-white photos, 250 required further checking on color transparencies using a zoom stereoscope. This examination resulted in a final identification of 67 sites, the locations of which were delineated on 1:24,000 USGS maps. The use of air photo interpretation techniques provided an effective procedure for identifying waste sites quickly as well as providing a useful demonstration program for county and state officials.  相似文献   
10.
介绍了废旧聚苯乙烯(PS)泡沫塑料的回收概况、来源与分类、回收工艺和方法、回收技术瓶颈,重点讨论了熔融造粒法回收和改性废旧聚苯乙烯(Ps)泡沫塑料的工艺与进展,不同造粒回收工艺适合的原料种类,资源化利用的方向等,并对不同回收工艺的聚苯乙烯粒子性能作出了比较。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号