首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   11篇
  2021年   1篇
  2017年   1篇
  2012年   4篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.

Among the wide range of compounds reaching the soil are the veterinary antimicrobials. Since no regulations regarding acceptable levels of drug concentrations in the environment exist, monitoring tests, particularly concerning soils, are carried out very rarely. This study presents a preliminary assessment of the contamination of agricultural soils in Northern Poland with seven antimicrobial veterinary medicines which has never been carried out before. Veterinary drugs were detected in 54% of the examined soil samples; the most commonly detected drugs were sulfonamides and trimethoprim. The highest indicated concentrations refer to enrofloxacin (57.0 μg kg?1) and trimethoprim (47.8 μg kg?1). The presence of these target drugs in the soil environment confirms the need for further monitoring studies. The analytical methods developed in this study are an excellent tool to achieve this goal and allow an estimation of the risk connected with the presence of veterinary antimicrobials in soils.

  相似文献   
2.
Background, aim, and scope  Ionic liquids are regarded as essentially “green” chemicals because of their insignificant vapor pressure and, hence, are a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them, the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride. Materials and methods  The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide. All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with the aid of 1H NMR. Results  Degradation of ionic liquids in this system was quite effective. Increasing the H2O2 concentration from 100 to 400 mM improved ionic liquid degradation from 57–84% to 87–100% after 60 min reaction time. Resistance to degradation was weaker, the shorter the alkyl chain. Discussion  The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium ionic liquids by OH· are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Conclusions  The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium chloride when the resistance of imidazolium ionic liquids decreases with increasing H2O2 concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Recommendations and perspectives  Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the future structural design as well as tailor the technological process of these chemicals  相似文献   
3.
This paper reports on the (eco)toxicity and biodegradability of ionic liquids considered for application as lubricants or lubrication additives. Ammonium- and pyrrolidinium-based cations combined with methylsulphate, methylsulphonate and/or (CF3SO2)2N anions were investigated in tests to determine their aquatic toxicity using water fleas Daphnia magna, green algae Selenastrum capricornutum and marine bacteria (Vibrio fischeri). Additional test systems with an isolated enzyme (acetylcholinesterase) and isolated leukaemia cells from rats (IPC-81) were used to assess the biological activity of the ionic liquids. These compounds generally exhibit low acute toxicity and biological activity. Their biodegradability was screened according to OECD test procedures 301 B and 301 F. For choline and methoxy-choline ionic liquids ready biodegradability was observed within 5 or 10 d, respectively. Some of the compounds selected have a considerable potential to contribute to the development of more sustainable products and processes.  相似文献   
4.
Ecotoxicity evaluation of selected sulfonamides   总被引:6,自引:0,他引:6  
Sulfonamides (SAs) are a group of antibiotic drugs widely used in veterinary medicine. The contamination of the environment by these pharmaceuticals has raised concern in recent years. However, knowledge of their (eco)toxicity is still very basic and is restricted to just a few of these substances. Even though their toxicological analysis has been thoroughly performed and ecotoxicological data are available in the literature, a systematic analysis of their ecotoxicological potential has yet to be carried out. To fill this gap, 12 different SAs were chosen for detailed analysis with the focus on different bacteria as well as non-target organisms (algae and plants). A flexible (eco)toxicological test battery was used, including enzymes (acetylcholinesterase and glutathione reductase), luminescent marine bacteria (Vibrio fischeri), soil bacteria (Arthrobacter globiformis), limnic unicellular green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor), in order to take into account both the aquatic and terrestrial compartments of the environment, as well as different trophic levels. It was found that SAs are not only toxic towards green algae (EC50 = 1.54-32.25 mg L−1) but have even stronger adverse effect on duckweed (EC50 = 0.02-4.89 mg L−1) than atrazine - herbicide (EC50 = 2.59 mg L−1).  相似文献   
5.
In this paper, we present applied methanol recycling technology utilising Chromatographic applications, which has been designed for an academic-size institution. The procedure is combined out of proper recovery technique and the biodegradation method intended for postprocessing residues. Additionally, analytical methods controlling the quality of the process are described in detail in order to enable full transfer of the proposed methodology to the analogous institution. The recovered solvent is of relatively high purity (> 99.92%), containing traces of water and volatile compounds. The spectral purity is sufficient to employ recycled methanol in HPLC applications where low wayelength detection is necessary. Biodegradation of distillation first-cuts and still bottoms is implemented using isolated strains ofMethylobacterium organophilum. During the biodegradation process, a series of carotenoids are biosynthesized, which are of a high commercial value. The proposed application, therefore, offers not only a sustainable, waste-free solution in handling methanol waste, but can also serve as a potential source of value.  相似文献   
6.
Recovery of astaxanthin from seafood wastewater utilizing fish scales waste   总被引:2,自引:0,他引:2  
The paper presents basic data on astaxanthin adsorption from fisheries wastewater to fish scales. This process has been proposed to be applicable in fisheries and shrimp waste management [Helgason, Recovery of compounds using a natural adsorbent, Patent WO 01/77230, 2001]. The innovative feature of the method is the application of a solid waste (fish scales) as a natural adsorbent for a carotenoid pigment (astaxanthin) from the seafood industry wastewater. The model investigations were performed with pure synthetic carotenoids to exclude the role of matrix in which astaxanthin is present in the wastewater. Under the experimental conditions used, the maximum loading capacity of astaxanthin onto the scales is 360 mg kg(-1) dry wt. Studies of the thus formed value added product indicated that drying causes significant loss of astaxanthin activity. Due to the effective filtration characteristics of the studied sorption material, we suggest the scale/astaxanthin sorption process to be suitable for treatment of wastewater from different industries.  相似文献   
7.
Several physico-chemical properties relevant to determine the environmental impact of ionic liquids - aqueous solubility, octanol/water partition coefficient, chromatographically derived lipophilicity and infinite dilution diffusion coefficients in water - were measured in ionic liquids based on pyridinium, ammonium and pyrrolidinium cations with bis(trifluoromethylsulfonyl)imide anions. The influence of the presence of hydroxyl or ester groups in the physico-chemical properties of these liquids was checked. It appeared that the presence of functional oxygenated moieties reduces the lipophilicity of ionic liquids and so decreases the risk of bioaccumulation in environment.  相似文献   
8.
Passive techniques are a constantly evolving approach to the long-term monitoring of micropollutants, including pharmaceuticals, in the aquatic environment. This paper presents, for the first time, the calibration results of a new CNTs-PSDs (carbon nanotubes used as a sorbent in passive sampling devices) with an examination of the effect of donor phase salinity, water pH and the concentration of dissolved humic acids (DHAs), using both ultrapure and environmental waters. Sampling rates (Rs) were determined for the developed kinetic samplers. It has been observed that the impact of the examined environmental factors on the Rs values strictly depends on the type of the analytes. In the case of β-blockers, the only environmental parameter affecting their uptake rate was the salinity of water. A certain relationship was noted, namely the higher the salt concentration in water, the lower the Rs values of β-blockers. In the case of sulfonamides, water salinity, water pH 7–9 and DHAs concentration decreased the uptake rate of these compounds by CNTs-PSDs. The determined Rs values differed in particular when the values obtained from the experiments carried out using ultrapure water and environmental waters were compared. The general conclusion is that the calibration of novel CNTs-PSDs should be carried out under physicochemical conditions of the aquatic phase that are similar to the environmental matrix.  相似文献   
9.
Sorption of ionic liquids onto soils: experimental and chemometric studies   总被引:2,自引:0,他引:2  
Chemometric analyses are a great tool to support typical experimental studies of the interactions of xenobiotics with natural environment. Such interpretations are able to determine statistically significant correlations and finally lead to identification of the major sorption factors. However, to effectively use chemometrics a bigger data set is required. Even though the ionic liquids are intensively studied, their complete fate or prediction of their behavior in the natural environment is still unclear. Therefore, to evaluate and distinguish the patterns of interactions of ILs in soil environment by chemometrics, sorption of nine ionic liquids (imidazolium and pyridinium chlorides) on 11 types of various soils was tested. Experimental studies indicated that compounds with longer alkyl side chains were sorbed far more strongly than weakly lipophilic ones. Moreover, salts with short and/or hydroxylated derivatives were more mobile in soils/sediments and thus, might cause a danger of contamination of surface or ground waters. Cluster analysis revealed that ionic liquids form two major clusters according to interaction with soil surface - one grouping compounds with short and hydroxylated alkyl side chains and the second with the rest of compounds. Pairwise scatterplots for correlations between soil variables and sorption coefficients indicated that the main soil parameter responsible for the sorption was cation exchange capacity. Correlation of sorption coefficients, K(d), with pH indicated the existence of lower sorption potency in lower pH values.  相似文献   
10.
Sulfonamides (SAs) are one of the oldest groups of veterinary chemotherapeutic agents. As these compounds are not completely metabolized in animals, a high proportion of the native form is excreted in feces and urine. They are therefore released either directly to the environment in aquacultures and by grazing animals, or indirectly during the application of manure or slurry. Once released into the environment, SAs become distributed among various environmental compartments and may be transported to surface or ground waters. The physicochemical properties of SAs, dosage and nature of the matrix are the factors mainly responsible for their distribution in the natural environment. Although these rather polar compounds have been in use for over half a century, knowledge of their fate and behavior in soil ecosystems is still limited. Therefore, in this work we have determined the sorption potential of sulfadimethoxine and sulfaguanidine on various natural soils. The influence on sorption of external factors, such as ionic strength and pH, were also determined. The sorption coefficients (Kd) obtained for the sulfonamides investigated were quite low (from 0.20 to 381.17 mL g−1 for sulfadimethoxine and from 0.39 to 35.09 mL g−1 for sulfaguanidine), which indicated that these substances are highly mobile and have the potential to run off into surface waters and/or infiltrate ground water. Moreover, the sorption of these pharmaceuticals was found to be influenced by OC, soil solution pH and ionic strength, with higher Kd values for soils of higher OC and lower Kd values with increasing pH and ionic strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号