首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
综合类   1篇
污染及防治   1篇
  2013年   1篇
  2005年   1篇
  1980年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Time series of fossil fuel carbon emissions from 1960–2000 for each of the U.S. states and the District of Columbia are presented and discussed. Comparison of the nationally summarized results with other national datasets shows generally good agreement, usually within 2%, and gives insight into the quality of all the data series. Our extension of the state-by-state emissions estimates back to 1960 reveals patterns of change that are coherent across states and can be related to historic events such as energy crises and federal legislation. Most notable is the changing pattern of coal usage, as coal-producing states produce increasingly more energy (mostly for electricity) for other states so that per capita CO2 emissions diverge for states that import as opposed to those that export electricity. The decline in carbon emissions from petroleum products following the 1970s is also evident. Per capita emissions range over an order of magnitude for the different states. The data suggest that differences in per capita emissions arise from differences in many technological, physical, resource, social, and economic factors. The data presented here and the few correlations briefly noted pose a challenge for trying to use per capita emissions as a measure of equity or to provide mitigation targets.  相似文献   
2.
Abstract

Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg0) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from ~1–10 ng m?2 hr?1 over aged landfill cover, from ~8–20 mg/hr from LFG flares (LFG included Hg0 at μg/m3 concentrations), and from ~200–400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10–50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   
3.
Book reviews     
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号