首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
环保管理   9篇
综合类   1篇
基础理论   4篇
污染及防治   2篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  1967年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
A field lysimeter study with bare ground and five different ground covers was established to evaluate the effect of forage grasses on the fate and transport of two herbicides in leachate. The herbicides were atrazine (ATR; 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) and isoxaflutole [IXF; 5-cyclopropyl-4-(2-methylsulfonyl-4-trifluormethyl-benzoyl)isoxazole], which has the commercial name Balance (Aventis Crop Science, Strasbourg, France). The ground covers included orchardgrass (Dactylis glomerata L.), smooth bromegrass (Bromus inermis Leyss.), tall fescue (Festuca arundinacea Schreb.), timothy (Phleum pratense L.), and switchgrass (Panicum virgatum L.). The results suggested that the total IXF (parent + metabolites) showed higher mobility than ATR and its metabolites. Differences in the timing of transport reflected the rapid degradation of IXF to the more soluble, stable, and biologically active diketonitrile (DKN) metabolite in the system. Although grass treatments did not promote the hydrolysis of DKN, they significantly reduced its transport in the leachate through enhanced evapotranspiration. Grass treatments significantly enhanced ATR degradation in the leachates and soils, especially through N dealkylation, but they did not reduce total ATR transported in the leachate. Leachate from the orchardgrass lysimeters contained the highest proportion of ATR metabolites (64.2%). Timothy and smooth bromegrass treatments also displayed a significant increase in ATR metabolites in leachate. Grass-treated lysimeters showed higher microbial biomass carbon than bare ground. For ATR treatments, the proportion of metabolites in the leachate strongly correlated with the elevated soil microbial biomass carbon in forage treatments. In contrast, DKN degradation was poorly correlated with soil microbial biomass carbon, suggesting that DKN degradation is an abiotic process.  相似文献   
2.
The Pliocene lignite hypothesis is an environmental hypothesis that has been proposed to explain the etiology of Balkan endemic nephropathy (BEN). Aqueous leaching experiments were conducted on a variety of coal samples in order to simulate groundwater leaching of organic compounds, and to further test the role of the Pliocene lignite hypothesis in the etiology of BEN. Experiments were performed on lignite coal samples from endemic BEN areas in Romania and Serbia, and lignite and bituminous coals from nonendemic regions in Romania and the USA. Room temperature, hot water bath, and Soxhlet aqueous extraction experiments were conducted between 25 and 80 °C, and from 5 to 128 days in duration. A greater number of organic compounds and in higher concentrations were present in all three types of leaching experiments involving endemic area Pliocene lignite samples compared to all other coals examined. A BEN causing molecule or molecules may be among phenols, PAHs, benzenes, and/or lignin degradation compounds. The proposed transport pathway of the Pliocene lignite hypothesis for organic compound exposure from endemic area Pliocene lignite coals to well and spring drinking water, is likely. Aromatic compounds leached by groundwater from Pliocene lignite deposits in the vicinity of endemic BEN areas may play a role in the etiology of the disease. A better understanding of organic compounds leached by groundwater from Pliocene lignite deposits may potentially lead to the identification and implementation of effective strategies for the prevention of exposure to the causative agent(s) for BEN, and in turn, prevention of the disease.  相似文献   
3.
Aristolochic acids (AAs) are nephrotoxic and carcinogenic derivatives found in several Aristolochia species. To date, the toxicity of AAs has been inferred only from the effects observed in patients suffering from a kidney disease called “aristolochic acid nephropathy” (AAN, formerly known as “Chinese herbs nephropathy”). More recently, the chronic poisoning with Aristolochia seeds has been considered to be the main cause of Balkan endemic nephropathy, another form of chronic renal failure resembling AAN. So far, it was assumed that AAs can enter the human food chain only through ethnobotanical use (intentional or accidental) of herbs containing self-produced AAs. We hypothesized that the roots of some crops growing in fields where Aristolochia species grew over several seasons may take up certain amounts of AAs from the soil, and thus become a secondary source of food poisoning. To verify this possibility, maize plant (Zea mays) and cucumber (Cucumis sativus) were used as a model to substantiate the possible significance of naturally occurring AAs’ root uptake in food chain contamination. This study showed that the roots of maize plant and cucumber are capable of absorbing AAs from nutrient solution, consequently producing strong peaks on ultraviolet HPLC chromatograms of plant extracts. This uptake resulted in even higher concentrations of AAs in the roots compared to the nutrient solutions. To further validate the measurement of AA content in the root material, we also measured their concentrations in nutrient solutions before and after the plant treatment. Decreased concentrations of both AAI and AAII were found in nutrient solutions after plant growth. During this short-term experiment, there were much lower concentrations of AAs in the leaves than in the roots. The question is whether these plants are capable of transferring significant amounts of AAs from the roots into edible parts of the plant during prolonged experiments.  相似文献   
4.
5.
6.
Stimulated rhizodegradation of atrazine by selected plant species   总被引:1,自引:0,他引:1  
The efficacy of vegetative buffer strips (VBS) in removing herbicides deposited from surface runoff is related to the ability of plant species to promote rapid herbicide degradation. A growth chamber study was conducted to compare C-atrazine (ATR) degradation profiles in soil rhizospheres from different forage grasses and correlate ATR degradation rates and profiles with microbial activity using three soil enzymes. The plant treatments included: (i) orchardgrass ( L.), (ii) smooth bromegrass ( Leyss.), (iii) tall fescue ( Schreb.), (iv) Illinois bundle flower (), (v) perennial ryegrass ( L.), (vi) switchgrass ( L.), and (vii) eastern gamagrass (). Soil without plants was used as the control. The results suggested that all plant species significantly enhanced ATR degradation by 84 to 260% compared with the control, but eastern gamagrass showed the highest capability for promoting biodegradation of ATR in the rhizosphere. More than 90% of ATR was degraded in the eastern gamagrass rhizosphere compared with 24% in the control. Dealkylation of atrazine strongly correlated with increased enzymatic activities of β-glucosidase (GLU) ( = 0.96), dehydrogenase (DHG) ( = 0.842), and fluorescein diacetate (FDA) hydrolysis ( = 0.702). The incorporation of forage species, particularly eastern gamagrass, into VBS designs will significantly promote the degradation of ATR transported into the VBS by surface runoff. Microbial parameters widely used for assessment of soil quality, e.g., DHG and GLU activities, are promising tools for evaluating the overall degradation potential of various vegetative buffer designs for ATR remediation.  相似文献   
7.
Lerch, R.N., E.J. Sadler, K.A. Sudduth, C. Baffaut, and N.R. Kitchen, 2010. Herbicide Transport in Goodwater Creek Experimental Watershed: I. Long‐Term Research on Atrazine. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2010.00503.x Abstract: Atrazine continues to be the herbicide of greatest concern relative to contamination of surface waters in the United States (U.S.). The objectives of this study were to analyze trends in atrazine concentration and load in Goodwater Creek Experimental Watershed (GCEW) from 1992 to 2006, and to conduct a retrospective assessment of the potential aquatic ecosystem impacts caused by atrazine contamination. Located within the Central Claypan Region of northeastern Missouri, GCEW encompasses 72.5 km2 of predominantly agricultural land uses, with an average of 21% of the watershed in corn and sorghum. Flow‐weighted runoff and weekly base‐flow grab samples were collected at the outlet to GCEW and analyzed for atrazine. Cumulative frequency diagrams and linear regression analyses generally showed no significant time trends for atrazine concentration or load. Relative annual loads varied from 0.56 to 14% of the applied atrazine, with a median of 5.9%. A cumulative vulnerability index, which takes into account the interactions between herbicide application, surface runoff events, and atrazine dissipation kinetics, explained 63% of the variation in annual atrazine loads. Based on criteria established by the U.S. Environmental Protection Agency, atrazine reached concentrations considered harmful to aquatic ecosystems in 10 of 15 years. Because of its vulnerability, atrazine registrants will be required to work with farmers in GCEW to implement practices that reduce atrazine transport.  相似文献   
8.
The effectiveness of vegetative buffer strips (VBS) for reducing herbicide transport has not been well documented for runoff prone soils. A multi‐year plot‐scale study was conducted on an eroded claypan soil with the following objectives: (1) assess the effects of buffer width, vegetation, and season on runoff transport of atrazine (ATR), metolachlor (MET), and glyphosate; (2) develop VBS design criteria for herbicides; and (3) compare differences in soil quality among vegetation treatments. Rainfall simulation was used to create uniform antecedent soil water content and to generate runoff. Vegetation treatment and buffer width impacted herbicide loads much more than season. Grass treatments reduced herbicide loads by 19‐28% and sediment loads by 67% compared to the control. Grass treatments increased retention of dissolved‐phase herbicides by both infiltration and adsorption, but adsorption accounted for the greatest proportion of retained herbicide load. This latter finding indicated VBS can be effective on poorly drained soils or when the source to buffer area ratio is high. Grass treatments modestly improved surface soil quality 8‐13 years after establishment, with significant increases in organic C, total N, and ATR and MET sorption compared to continuously tilled control. Herbicide loads as a function of buffer width were well described by first‐order decay models which indicated VBS can provide significant load reductions under anticipated field conditions.  相似文献   
9.
There are many challenges in the accurate quantification of bacterial genes, such as the atrazine-degrading enzyme antA from Pseudomonas sp. strain ADP, from soil samples. We compared four quantitative methods for enumeration of atrazine-degrading bacteria in rhizosphere environments and utilized the optimal probe-based real-time polymerase chain reaction (PCR)-based method in an ongoing bioremediation experiment to monitor atzA copy number over time. We compared three quantitative PCR (qPCR) based methods--quantitative competitive PCR and two real-time qPCR methods--to traditional dilution-plate counting techniques. The optimal real-time qPCR assay was then used to monitor atzA copy number over time in the robust atrazine-degrading Pseudomonas sp. strain ADP-spiked rhizosphere environment. The use of sensitive and reliable probe-based real-time qPCRs for the enumeration of bacterial catabolic genes allows for their detection from soil samples and monitoring of potential degradative populations over time. The addition of arrazine-biodegrading bacteria into arrazine-contaminated sites to remove entrapped atrazine is a promising approach for mitigating atrazine pollution and its metabolites. The methodology contained herein will allow for optimal monitoring of atzA in rhizosphere soil with or without the addition of biodegradative Pseudomonas sp. strain ADP of bacteria.  相似文献   
10.
A sound multi-species vegetation buffer design should incorporate the species that facilitate rapid degradation and sequestration of deposited herbicides in the buffer. A field lysimeter study with six different ground covers (bare ground, orchardgrass, tall fescue, timothy, smooth bromegrass, and switchgrass) was established to assess the bioremediation capacity of five forage species to enhance atrazine (ATR) dissipation in the environment via plant uptake and degradation and detoxification in the rhizosphere. Results suggested that the majority of the applied ATR remained in the soil and only a relatively small fraction of herbicide leached to leachates (<15%) or was taken up by plants (<4%). Biological degradation or chemical hydroxylation of soil ATR was enhanced by 20 to 45% in forage treatment compared with the control. Of the ATR residues remaining in soil, switchgrass degraded more than 80% to less toxic metabolites, with 47% of these residues converted to the less mobile hydroxylated metabolites 25 d after application. The strong correlation between the degradation of N-dealkylated ATR metabolites and the increased microbial biomass carbon in forage treatments suggested that enhanced biological degradation in the rhizosphere was facilitated by the forages. Hydroxylated ATR degradation products were the predominant ATR metabolites in the tissues of switchgrass and tall fescue. In contrast, the N-dealkylated metabolites were the major degradation products found in the other cool-season species. The difference in metabolite patterns between the warm- and cool-season species demonstrated their contrasting detoxification mechanisms, which also related to their tolerance to ATR exposure. Based on this study, switchgrass is recommended for use in riparian buffers designed to reduce ATR toxicity and mobility due to its high tolerance and strong degradation capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号