首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2008年   3篇
  2002年   1篇
  1987年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Short exposure to ozone depressed photosynthesis in both oat and duckweed at concentrations above 140 microg m(-3) and 300 microg m(-3), respectively. The effect on exposed oat flag leaves was age-dependent, with maximum susceptibility to ozone 10-20 days after emergence of the panicle. In duckweed, photosynthesis was more sensitive to differences in ozone concentration than to differences in duration of exposure.  相似文献   
2.
Solid-phase microextraction (SPME) coupled with atomic emission spectroscopy was evaluated as a rapid screening tool for volatile halogenated compounds in water samples. After extraction, the SPME fiber was introduced to the injector where the analytes were rapidly and efficiently desorbed. The analytes entered the detector over a short period of time and produced one well-defined analyte signal. Element selective responses were measured to confirm the presence and to roughly estimate the content of volatile compounds. The total time for extraction and detection was approximately 5 min, which makes this method a rapid and promising technique for determination of total amount of volatile halogenated compounds. The proposed technique may prove useful as a screening test in order to pinpoint the samples that need further assessment by capillary gas chromatography.  相似文献   
3.
We have manipulated the winter-time soil temperature regime of small headwater catchments in a montane heathland area of southern Norway to study the possible effects on concentrations and fluxes of inorganic nitrogen in runoff. The experiments included extra insulation of soils in two catchments to prevent subzero temperatures during winter, and removal of snow in two other catchments to promote soil frost. Increased soil temperatures during winter increased the springtime concentrations and fluxes of ammonium (NH4) and nitrate (NO3) in runoff. By contrast, snow removal with development of significant soil frost showed no systematic effects on mean concentrations or fluxes of inorganic N. The results from our experiments suggest that warmer soils during winter caused by exceptionally mild winters, or alternatively a heavy snowpack, imply a greater risk for inorganic N leaching in this region than a possible increase of soil frost events because of reduced snow cover.  相似文献   
4.
Projected changes in climate in Southern Norway include increases in summer and autumn precipitation. This may affect leaching of dissolved organic matter (DOM) from soils. Effects of experimentally added extra precipitation (10 mm week) during the growing season of 3 years (2004-2006) to small headwater catchments at Storgama (59 degrees 0'N, 550-600 m a.s.l.) on leaching of total organic carbon (TOC) and total organic nitrogen (TON) were assessed. Extra precipitation did not have a significant effect on average TOC and TON concentrations in runoff. Thus, fluxes of TOC and TON increased nearly proportionally with water fluxes. This suggests that a store of adsorbed and potentially mobile TOC and TON in catchment soils buffers the concentration of DOM in runoff. The size and dynamics of the pool of TOC and TON depends on the balance between production and leaching rates. Infrequent short droughts had only small effects on TOC and TON fluxes in runoff from the reference catchments.  相似文献   
5.
Projected increases in winter temperature due to future climate change may cause decreased snow accumulation at lower and intermediate altitudes in northern temperate regions. The resulting changes in soil temperature and water regime may affect the leaching of total organic carbon (TOC) and total organic nitrogen (TON). We manipulated the snow cover of small headwater catchments in a montane heathland area of southern Norway to quantify its effect on concentrations and fluxes of TOC and TON in runoff. Manipulations included snow removal, to promote soil frost, and insulation, to prevent soil frost. Snow removal resulted in increased TOC and TON concentrations, but decreased fluxes. Insulation caused a slight decrease in concentrations and fluxes of TOC. Our experiments show that a change in snow depth, and thus soil temperature, is not likely to have serious effects on TOC and TON leaching in the montane heathland area studied.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号