首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   5篇
  国内免费   13篇
安全科学   1篇
综合类   11篇
基础理论   2篇
污染及防治   9篇
评价与监测   1篇
灾害及防治   1篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
为实现有效通风以降低隧道火灾带来的损失和伤亡,依托青岛市地铁8号线大洋站至青岛北站区间隧道,建立线性比尺为1∶15的隧道通风排烟模型实验系统,针对通风机串联单抽,围绕3种通风机频率匹配组合,测定单机的变频频率值、电功消耗、排烟道与行车道的断面平均风速以及右侧行车道静压。研究结果表明:在相同功率消耗下,不同频率匹配的串联通风机排烟效果存在差异;针对此差异,利用气体挡烟墙性能及其计算欧拉数值比较发现,风井近端的通风机频率较大时,下游对污染气流的抵抗力更强,拥有更好的排烟效果。研究结果可为隧道火灾提供更有效率的防灾救灾数据支持,并从欧拉数方面为研究隧道临界风速提供新角度。  相似文献   
2.
以累托石、丙烯酸及腐殖酸为原料制备出能同时吸附重金属和多环芳烃的吸附剂聚丙烯酸/腐殖酸/累托石,采用响应面试验设计法优化吸附剂的制备条件。利用Design Expert软件,建立了预测吸附剂对Cd2+、菲吸附量的二次回归模型,对回归模型进行了方差分析,并确定了吸附剂的最佳制备条件。结果表明,二次回归模型能较好地模拟Cd2+、菲的吸附量与影响因子丙烯酸中和度、引发剂量和交联剂量之间的关系。各因子对Cd2+吸附量的影响次序为:交联剂量>引发剂量>丙烯酸中和度;对菲吸附量的影响次序为引发剂量>交联剂量>丙烯酸中和度。吸附剂的最佳制备条件为:累托石、丙烯酸和腐殖酸三者的质量比为65∶30∶5,丙烯酸中和度、引发剂量和交联剂量分别为75.16%、2.57%和0.44%。在此优化条件下制备的吸附剂对Cd2+和菲的吸附量分别为170.19 mg/g和7.36 mg/g。  相似文献   
3.
生物质铬渣共热解工艺是新型的铬渣处理工艺,该工艺能有效地将铬渣中的Cr(Ⅵ)还原为Cr(Ⅲ).而由于共热解产物总铬含量较高,因此考察了铬渣与秸秆共热解过程中铬稳定性.通过考察共热解产物成分及形态分析、pH影响实验、淋洗实验及长期稳定性实验,对共热解铬渣的铬环境安全性进行评估.结果表明:(1)共热解温度对铬渣形态有较大影响,可交换态及碳酸盐结合态铬含量随共热解温度升高而逐渐降低,800℃时候可交换态铬降至<0.1%(质量分数,下同),碳酸盐结合态铬为1.2%;共热解后最稳定的残渣态铬含量随共热解温度升高而逐渐升高.(2)当pH>7时,两种共热解产物总铬溶出量极低,基本都小于6mg/kg;当pH≤7时,总铬的溶出量显著增加,最高超过500 mg/kg.但由于解毒铬渣的酸中和能力极强,因此铬释放风险较低.(3)共热解产物的总铬累积溶出量极低,根据拟合结果计算出其100年填埋时间的总铬溶出量不超过1.3 mg/kg.长期稳定性实验表明,自然堆置过程中共热解产物的Cr(Ⅵ)含量逐渐降低.  相似文献   
4.
硫酸根自由基(SO■)高级氧化技术(SR-AOPs)是一种新型的原位化学氧化技术(ISCO),在水处理领域具有广阔的应用前景,可用于治理土壤和地下水中抗生素污染.本研究采用热活化过硫酸盐(PS)产生SO■,考察其对水溶液中抗生素卡巴多司(CBX)和奥喹多司(OQX)的降解效果,评估操作参数和水质成分对CBX降解的影响,并对CBX的降解产物进行鉴定.结果表明,与OQX相比,CBX更容易被热活化PS工艺氧化降解,这可能是因为CBX含有富电子的腙支链,而OQX含有惰性的酰胺支链.升高温度、增加PS浓度和降低溶液pH值均可显著促进CBX的降解.HCO~-_3的存在对CBX降解有促进作用,可能是由于生成的碳酸根自由基(CO■)参与了反应.Suwannee河富里酸(SRFA)具有双重影响,低浓度时促进CBX降解,而高浓度时呈现抑制作用.NO~-_3的存在对CBX的降解没有明显影响,而NO~-_2的存在可以显著抑制其降解.CBX在天然地表水中的降解效率低于在地下水中的效率,可能与不同水质中天然有机质的含量有关.产物鉴定表明,热活化PS氧化降解CBX生成了羟基化、脱氧和支链断裂产物,表明氧化反应主要改变了CBX分子中的腙支链和N—O结构.研究表明,热活化PS工艺可有效降解水溶液中的CBX和OQX,但在该技术实际应用时应充分评估天然水质成分的影响.  相似文献   
5.
• A model coupling water-heat-salt of unsaturated frozen soil was established. • Future temperature, precipitation, and evaporation increase in freeze–thaw period. • Soil water, heat, and salt transport are closely coupled during freeze–thaw period. • Freeze–thaw cycles and future climate change can exacerbate salinization. The transport mechanisms of water, heat, and salt in unsaturated frozen soil, as well as its response to future climate change are in urgent need of study. In this study, western Jilin Province in north-eastern China was studied to produce a model of coupled water-heat-salt in unsaturated frozen soil using CoupModel. The water, heat, and salt dynamics of unsaturated frozen soil under three representative concentration pathway (RCP) scenarios were simulated to analyze the effects of future climate change on unsaturated frozen soil. The results show that water, heat, and salt migration are tightly coupled, and the soil salt concentration in the surface layer (10 cm) exhibits explosive growth after freezing and thawing. The future (2020–2099) meteorological factors in the study area were predicted using the Statistical Downscaling Model (SDSM). For RCP2.6, RCP4.5, and RCP8.5 scenarios, future temperatures during the freeze–thaw period increased by 2.68°C, 3.18°C, and 4.28°C, respectively; precipitation increased by 30.28 mm, 28.41 mm, and 32.17 mm, respectively; and evaporation increased by 93.57 mm, 106.95 mm, and 130.57 mm, respectively. Climate change will shorten the freeze–thaw period, advance the soil melting time from April to March, and enhance water and salt transport. Compared to the baseline period (1961–2005), future soil salt concentrations at 10 cm increased by 1547.54 mg/L, 1762.86 mg/L, and 1713.66 mg/L under RCP2.6, RCP4.5, and RCP8.5, respectively. The explosive salt accumulation is more obvious. Effective measures should be taken to prevent the salinization of unsaturated frozen soils and address climate change.  相似文献   
6.
为维护我国西北地区生态安全,引导煤炭资源有序开发利用,以甘肃省、青海省、新疆维吾尔自治区为研究区域,结合西北地区典型内陆河流域地下水形成特征及区域生态环境特点,选取与区域煤炭综合开发活动具有重要关联的地下水资源、生态环境等指标,利用专家打分法确定评价指标权重,构建煤炭综合开发生态风险管控评价指标体系,通过对指标体系分级结果的空间转化,划分禁止开发区、限制开发区、适度开发区3个煤炭开发的生态风险管控区.结果表明:①禁止开发区面积约131.6×104 km2,占西北三省(自治区)总面积的46%,主要分布在柴达木、塔里木、准噶尔三大盆地的盆周及周边地区,总体上呈"三环"分布,禁止开发区应禁止一切煤炭开发活动.②限制开发区1区主要分布在新疆维吾尔自治区南部地区及天山北麓以及甘肃省河西走廊的人工绿洲,煤炭开发利用过程中要兼顾保护农田、地下水,维持防风固沙功能方可进行;限制开发区2区主要分布在甘肃省酒泉地区黑河流域,新疆维吾尔自治区阿克苏地区、喀什地区及和田地区的荒漠生态系统内以及环塔里木盆地外围地区,煤炭开发利用过程中需兼顾防风固沙功能及生态系统保护方可进行.③适度开发区分布较为分散,在保护特定生态系统功能的前提下可适度开发.研究显示,需针对上述不同类型的生态风险管控区提出差别化管理要求,重点对限制开发区、适度开发区的煤炭开发提出相应的生态保护要求,提出由限制为主转向优化发展为主的管理方略.   相似文献   
7.
长江经济带工业企业密集,环境风险点多,产业结构和布局不合理造成累积性、叠加性和潜在性的生态环境问题突出,制约了其持续健康发展.根据自然资源、社会经济和产业发展特征,选择3个典型流域(区域)(即重化产业最密集、人口最密集,重化产业布局性矛盾最突出的长江湖口以下干流区域;重大调水工程下游减水河段与涉水产业重点发展的汉江流域;生态系统脆弱的喀斯特地貌区与磷矿资源开发强度高的乌江流域)进行分析,并识别流域重化产业发展可能带来的环境风险问题及其演变趋势.基于保障“清洁长江”与“安全长江”建设的总体目标,按照“守底线、优格局、提质量、保安全”的调控思路,提出长江经济带典型流域重化产业绿色发展的优化调控对策和差别化生态环境保护与环境风险防控建议,为推动长江经济带的实施精准治理提供支撑,主要包括:①长江湖口以下干流区域以保障人居环境安全为目标,以各类工业园区为抓手优化布局,提升区域环境风险防控能力建设,研究制定长江沿岸地区持久性有机污染物控制对策;②汉江流域以流域环境承载力为硬约束,从国家产业政策战略高度调整汉江中下游的产业发展战略,严格控制高耗水和水污染产业的持续发展;③乌江流域以保障下游库区水质为目标,严控喀斯特地貌区域新增磷化工产能,研究喀斯特地貌区实施磷化工产业废水特别排放限值.   相似文献   
8.
有色金属矿在开采和冶炼的过程中会产生大量的尾矿渣和酸性矿山废水,后者被中和沉淀后成为中和渣.大量堆存的尾矿和中和渣会产生严重的安全和环境问题,亟需有效方法将其安全地处置或回收再利用.研究认为中和渣可以替代土壤作为植物的种植基质,进而缓解尾矿复垦中表土缺乏的困境,但该策略的可行性和安全性尚未经过系统的论证.本研究以紫金山铜矿堆浸废石边坡为对象,评估以中和渣替代自然土壤进行植被复垦的可行性,识别复垦过程中可能存在的限制植物生长的关键环境因子,分析中和渣中毒性重(类)金属元素的状况,比较不同种植方式和坡位对复垦效果的影响.结果表明,有机肥改良后的中和渣土壤氮、磷和钾的总量相对较好,孔隙度、容重和含水率和盐度持续改善.但其有机质总量的偏低,以及有机养分矿化速率较慢所导致的无机氮和有效磷的缺乏,很可能是限制植物生长的关键因素.中和渣所含重金属总量普遍保持稳定,产生二次的污染风险较小.相比机喷处理,人工穴播处理下的中和渣具有更好的养分条件和微生物多样性,但有pH下降和铜、铁和锰等重金属的有效性上升的趋势.本研究的结果表明,以中和渣作为土壤基质进行尾矿复垦是相对安全可行的,但仍需长期关注其pH的变化,并适当增加有机质的添加量和利用微生物菌剂促进其中养分的矿化.  相似文献   
9.
原油作为主要能源之一对现代社会的重要作用不言而喻,但其所带来的污染危害同样不容忽视.通过自制的有机玻璃水槽,建立模型模拟自然地层的非均质性,模拟了原油在沿海土-水系统中的运移过程,探讨了局部非渗透性透镜体、底部隔水层、土壤初始含水率、土壤质地、岩性突变界面对原油在砂土中运移速度和路径的影响.结果表明,局部非渗透性透镜体和底部隔水层对原油的运移具有阻碍作用,会改变其运动速度和路径.在一定范围内,土壤初始含水率越高,原油的侧向运移速率和垂向运移速率越大(模拟成层性土层中原油垂向运移速率随含水率增大,由0.43 cm·min~(-1)增大到1.00 cm·min~(-1),在低含水率区域原油侧向运移速率分别为0.08 cm·min~(-1)(粗-细界面)和0.10 cm·min~(-1)(细-粗界面),而在含水率较高的区域则为0.14 cm·min~(-1)),而过高的含水率又会阻碍原油的运移.土壤孔隙越大,垂向运移越快,侧向运移越慢,反之,垂向运移越慢,侧向运移越快(模拟成层性土层中,原油在粗砂中的垂向平均运移速率为0.54 cm·min~(-1),而在细砂中仅为0.33 cm·min~(-1),自然泄漏时原油在粗砂中的最大扩散范围为9.10 cm,在细砂中为12.50 cm).原油在土壤中运移遇到岩性突变界面时,会产生聚集效应,在聚集处产生侧向运移,试验中在粗-细界面扩散宽度为6.70 cm,在细-粗界面扩散宽度为29.00 cm.  相似文献   
10.
Environmental Science and Pollution Research - Urbanization in China has dramatically increased from 39.10 in 2002 to 58.52% in 2017. Studies have discussed the impacts of urbanization and its...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号