首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
基础理论   2篇
评价与监测   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
Managing human use of ecosystems in an era of rapid environmental change requires an understanding of diverse stakeholders’ behaviors and perceptions to enable effective prioritization of actions to mitigate multiple threats. Specifically, research examining how threat perceptions are shared or diverge among stakeholder groups and how these can evolve through time is increasingly important. We investigated environmental threat perceptions related to Australia's Great Barrier Reef and explored their associations before and after consecutive years of mass coral bleaching. We used data from surveys of commercial fishers, tourism operators, and coastal residents (n = 5254) conducted in 2013 and 2017. Threats perceived as most serious differed substantially among groups before bleaching but were strongly aligned after bleaching. Climate change became the most frequently reported threat by all stakeholder groups following the coral bleaching events, and perceptions of fishing and poor water quality as threats also ranked high. Within each of the 3 stakeholder groups, fishers, tourism operators, and coastal residents, the prioritization of these 3 threats tended to diverge in 2013, but convergence occurred after bleaching. These results indicate an emergence of areas of agreement both within and across stakeholder groups. Changes in perceptions were likely influenced by high-profile environmental-disturbance events and media representations of threats. Our results provide insights into the plasticity of environmental-threat perceptions and highlight how their convergence in response to major events may create new opportunities for strategic public engagement and increasing support for management.  相似文献   
2.
An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social–ecological vulnerability offers a valuable framework for identifying and understanding important social–ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social–ecological vulnerability. We developed a method to map social–ecological vulnerability based on information on human–nature dependencies and ecosystem services at local scales. We applied our method to the small‐scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social–ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human–nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social–ecological vulnerability framework for policy, planning, and participatory management decisions.  相似文献   
3.
Environmental Modeling & Assessment - This paper investigates the ecological-economic sustainability of coral reef socio-ecological systems under fishing and environmental pressures. To achieve...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号