首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   1篇
污染及防治   2篇
评价与监测   1篇
  2022年   1篇
  2009年   1篇
  2008年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 8 毫秒
1
1.
The aim of the present work is the assessment of metal toxicity in runoff, in their contaminated soils and in the groundwater sampled from two mining areas in the region of Marrakech using a microbial bioassay MetPLATE™. This bioassay is based on the specific inhibition of the β-galactosidase enzyme of a mutant strain of Escherichia coli, by the metallic pollutants. The stream waters from all sampling stations in the two mines were all very toxic and displayed percent enzyme inhibition exceeding 87% except SWA4 and SWB1 stations in mine C. Their high concentrations of copper (Cu) and zinc (Zn) confirm the acute toxicity shown by MetPLATE. The pH of stream waters from mine B and C varied between 2.1 and 6.2 and was probably responsible for metal mobilization, suggesting a problem of acid mine drainage in these mining areas. The bioassay MetPLATE™ was also applied to mine tailings and to soils contaminated by the acidic waters. The results show that the high toxicity of these soils and tailings was mainly due to the relatively concentration of soluble Zn and Cu. The use of MetPLATE™ in groundwater toxicity testing shows that, most of the samples exhibited low metal toxicity (2.7–45.5% inhibition) except GW3 of the mine B (95.3% inhibition during the wet season and 82.9% inhibition during the dry season). This high toxicity is attributed to the higher than usual concentrations of Cu (189 μg Cu l−1) and Zn (1505 μg Zn l−1). These results show the potential risk of the contamination of different ecosystems situated to the vicinity of these two metalliferous sites. The general trend observed was an increase in metal toxicity measured by the MetPLATE with increasing total and mobile metal concentrations in the studied matrices. Therefore, the MetPLATE bioassay is a reliable and fast bioassay to estimate the metals toxicity in the aquatic and solids samples.  相似文献   
2.
5-nitro-1,2,4-triazol-3-one (NTO) is a powerful insensitive explosive, present in industrial waste waters. A remediation method based on photochemical decomposition and Fenton oxidation of NTO has been evaluated by monitoring the mineralization of 14C-labelled NTO. The TiO2-catalyzed photodegradation (lambda > 290 nm, TiO2 0.4 g/l, NTO 150 mg/l)) leads to the complete mineralization of NTO in 3 hours. This degradation involves a simultaneous denitrification and ring scission of NTO leading to nitrites, nitrates and carbon dioxide. No significant photo-degradation of NTO was detected in the absence of the catalyst. Long term irradiation over one week, leads to a complete degradation of concentrated NTO (5 g/l), suggesting that this method could be useful to clean-up NTO wastes. Fenton oxidation offers an efficient cost-effective method for NTO remediation. This reaction is faster that the TiO2 catalyzed photolysis and find application on the mineralization of high concentrations of NTO (15 g/l). Fenton oxidation provokes ring cleavage and subsequent elimination of the two carbon atoms of NTO as CO2. During this reaction, the nitro group is completely transformed into nitrates.  相似文献   
3.
The aim of this work was to examine the performance of a sand filter in treating modern olive mill (OMW) effluents after dilution with domestic wastewater on a one-to-one basis. The experimental pilot consisted of a column of opaque PVC, and the sand filter was filled with 50 cm of sand and 10 cm of gravel in the top and the bottom of the filter. The alimentation (4 cm/day) was done sequentially following a 1 day wet/3 days dry cycle. The OMW effluent was very acidic with a pH of 4.12, and had high concentrations of phenolic compounds (7.2 g/L) and total chemical oxygen demand (65 g/L). The percolation of the diluted OMW through the sand filters caused an increase in pH from 4.84 to 8.25 and a 90% removal of total suspended solids. The sand filter treatment also led to important reductions in organic matter (90% of total COD, 83% of dissolved COD and 92% of phenolic compounds) and nutrients (91% of Kjeldahl-nitrogen, 97% of ammonia-nitrogen, 99% of nitrate-nitrogen and 99% of phosphates). The flow rate became very low indicating clogging of the sand pores after 10 weeks. HPLC analysis of the diluted OMW before and after passage through the sand filter showed an important reduction in the toxic monomeric compounds after the treatment.  相似文献   
4.

This study aims to evaluate and monitor the efficacy of a full-scale two-stage multi-soil-layering (TS-MSL) plant in removing fecal contamination from domestic wastewater. The TS-MSL plant under investigation consisted of two units in series, one with a vertical flow regime (VF-MSL) and the other with a horizontal flow regime (HF-MSL). Furthermore, this study attempts to see whether linear model (LM) and K-nearest neighbor (KNN) model can be used to predict total coliform (TC) removal in the TS-MSL system. For 24 months, the TS-MSL system was monitored, with bimonthly measurements recorded at the inlet and outlet of each compartment. Obtained results show removal of 85% of COD, 67% of TP, 27% of TN, and 3 log units of coliforms with good system stability. Thus, the effluent meets the Moroccan water quality code for reuse in the irrigation of green spaces. In addition, as compared to LM, the KNN model (R2 = 0.988) may be considered as an effective method for predicting TC removal in the TS-MSL system. Finally, sensitivity analysis has shown that TC and dissolved oxygen level in the influent were the most influential parameters for predicting TC removal in the TS-MSL system.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号