首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
评价与监测   1篇
  1998年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
We develop the conceptual and empirical basis for a multi-level ecosystem indicator for lakes. The ratio of total N to total P in lake water is influenced or regulated by a variety of ecosystem processes operating at several organizational levels and spatial scales: atmospheric, terrestrial watershed, lake water, and aquatic community. The character of the pelagic zooplankton assemblage is shown to be well correlated with lake water N:P ratio, with species assemblages arrayed along the N:P gradient in accordance with resource supply theory. Features of specific zooplankton assemblages or deviations from expected assemblages can provide information useful for lake managers, such as the efficiency of pollutant transfer and biomagnification of toxins, loss of cool-water refuge areas, degree of zooplanktivory and food web simplification related to changes in fisheries, and assemblage changes due to anthropogenic acidification. Evaluation of the influence of watershed land use, forest cover and vegetation type, atmospheric deposition, and basin hydrology on the supply of N and P to lake ecosystems provides a means to couple changes in the terrestrial environment to potential changes in aquatic ecosystems. Deviations of lake water N:P values from expected values based on analysis of watershed and lake basin characteristics, including values inferred from appropriate diatom microfossil deposits, can provide an independent validation and baseline reference for assessing the extent and type of disturbance. Therefore, the N:P ratio of lake water can serve as a potentially useful and inexpensively obtained proxy measure for assessing changes or shifts in the biological and nutrient status of lakes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号