首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
评价与监测   1篇
  2022年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Environmental Modeling & Assessment - The São Francisco River Basin plays a critical role in the hydroelectrical operational planning of Brazil. Understanding the hydroclimatic dynamic...  相似文献   
2.
Bowers, Holly A., Andreas Brutemark, Wanderson F. Carvalho, and Edna Granéli, 2010. Combining Flow Cytometry and Real-Time PCR Methodology to Demonstrate Consumption by Prymnesium parvum. Journal of the American Water Resources Association (JAWRA) 46(1):133-143. DOI: 10.1111/j.1752-1688.2009.00397.x Abstract: Harmful algal bloom species can persist in the environment, impacting aquatic life and human health. One of the mechanisms by which some harmful algal bloom species are able to persist is by consumption of organic particles. Methods to demonstrate and measure consumption can yield insight into how populations thrive. Here, we combine flow cytometry and real-time PCR to demonstrate consumption of a cryptophyte species (Rhodomonas sp.) by a toxic mixotrophic haptophyte (Prymnesium parvum). Using flow cytometry, the feeding frequency of a population of P. parvum cells was calculated using the phycoerythrin (PE) fluorescence signal from Rhodomonas sp. and the fluorescence of an acidotropic probe labeling the food vacuoles. Feeding frequency increased in the beginning of the experiment and then began to decline, reaching a maximum of 47.5% of the whole P. parvum population after 212 min. The maximum number of consumed Rhodomonas sp. cells was 0.8 per P. parvum cell, and occurred after 114 min corresponding to an ingestion rate of 0.4 Rhodomonas sp. cells/P. parvum/h. Cells from the feeding P. parvum population were sorted, washed, and subjected to a real-time PCR assay targeting the cryptophyte 18S locus. There was a correlation between cycle threshold (Ct) values and number of consumed prey cells calculated by fluorescence. Overall, this study shows that flow cytometric analysis, of the acidotropic probe and prey pigments, is an efficient and rapid tool in enumerating food vacuoles and the number of prey cells consumed. Furthermore, we suggest that real-time PCR can be applied to cells sorted by flow cytometry, thus allowing for the detection and potential quantification of the targeted prey cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号