首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   2篇
基础理论   2篇
污染及防治   1篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   
2.
Environmental Science and Pollution Research - Strategic valorization of readily available sugarcane bagasse (SB) is very important for waste management and sustainable biorefinery. Conventional SB...  相似文献   
3.

The present study attempts to assess the literacy levels of future managers of India in social, economic, and environment sustainability issues both at national and global levels among the students from Management Education Institutions (MEIs) located in Bengaluru, Chandigarh, and New Delhi. Additionally, a comparative study between the MEIs situated in Bengaluru, Chandigarh, and New Delhi, India, is undertaken. Interestingly, participants of the study specified more professional importance and personal relevance of sustainability. The study's outcome shows a higher level of sustainability knowledge among future managers from MEIs in New Delhi and Bengaluru. Future managers based out in New Delhi and Bengaluru are more aware of social and economic sustainability and having less awareness of environmental issues. Sustainability knowledge and awareness of the future managers are the first steps to engage them in building a sustainable future. It compels them to remain fully dedicated to creating a prosperous society and encourages them to make knowledgeable and successful choices to that end. The study's findings indicate a difference found in the levels of sustainability literacy among the Postgraduate students of Business Administration based in India's three metropolitan cities, including Chandigarh: Bengaluru and Delhi. The awareness about the local, national, or global eco-system, pollution, and other problems concerned with the environment was low among students based in Chandigarh, moderate among Delhi students, and high among the Bengaluru students.

  相似文献   
4.
Six soil samples (Pantnagar, Chamoli, Almora, Ranichauri, Pithoragarh and Badrinath) belonging to different geographical locations of Western Himalayas in India, were analyzed to diversify the nitrogen fixing bacterial community using nifH gene biomarker DNA from soil samples were isolated and amplified using nifH gene specific primers. Genomic DNA and PCR amplified products were then individually subjected to restriction digestion with tetra to octacutter enzymes (AluI, MspI, BgIII, XbaI, HindIII, HaeIII, AluI, MspI and PasI. Further restriction pattern was studied by preparing dendograms on the basis of similarity matrix and compared for the nifH community. It was observed that temperate region soils (Ranichauri and Pithoragarh) were negative for nifH marker while subalpine region (Badrinath) and tarai region soils (Pantnagar) documented similar nifH community. Moreover; the direct genomic DNA restriction analysis indicated that subalpine region soil (Badrinath) was most diversified.  相似文献   
5.
Seventeen bacterial isolates were screened for the utilization of low density polyethylene (LDPE) as the sole carbon source, out of which five potential strains were selected for the development of a consortium. In vitro biodegradation efficiency of the consortium was studied for two differently textured forms of LDPE viz. non-poronized and poronized. Although, both the forms were acted-upon well by the consortium, but the degradation was found to be better in the poronized form. This was substantiated by λ-max shift, FTIR spectra and simultaneous TG-DTG-DTA. The analysis revealed the breakage and formation of chemical bonds in the polymer backbone, as a result of microbial activity. The biodegraded samples of non-poronized and poronized LDPE exhibited similar weight losses at 400 °C (24.12% and 24.48%, respectively) as compared to their controls (4% and 4.5% respectively), but the latter could achieve it with greater ease as reveled by its lower heat of reactions (ΔH values). The study signifies the influence of poronization of polyethylene on its rate of biodegradation.  相似文献   
6.
Bacterial strains with poly-3-hydroxybutyrate (PHB) degradation potential were isolated from waste yard soil samples of selected industrial sites in Uttarakhand, India, and two microbial consortia were developed, i.e. Consortium I comprises Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18, and Consortium II is composed of Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19. The current study involved enrichment selection via liquid and semi-solid media, followed by isolation and screening of bacterial strains using PHB pellets and films. Furthermore, the identification and characterisation was done by triphasic approach. The utilisation of PHB by the characterised strains was confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the minimum inhibitory concentration of solubilised PHB was found to be 2.5?mg/mL, which was detected through ‘clear zone assay’. Further, the selection and biocompatibility testing of potential isolates were performed for the formation of bacterial consortia. Thus, the present work would provide direct and standardised protocol for screening and selection of potential microbiomes for biodegradation of polymers by overcoming the negative effect of organic solvents. Moreover, indigenously developed consortia would be evaluated for their in situ biodegradation potential against various bioplastic films.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号