首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
安全科学   5篇
综合类   1篇
  2023年   1篇
  2020年   1篇
  2014年   1篇
  2009年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The RAMseS project, under the European Commission's 6th Framework Program, is dedicated to the construction and test of low-power operations based on photovoltaic power and a multipurpose electric vehicle. In the present study, the life-cycle costs and economical indices for the vehicle during its life span were assessed, compared to those of a standard internal combustion engine vehicle (ICEV). The results indicated that the life-cycle costs for the RAMseS vehicle and the ICEV are the same for a fuel unit price of 1.8 €/L. Also, the levelized cost of energy (LCE) for the RAMseS vehicle, was found to be 2.13 €/kWh, while RAMseS LCE, without EV taken into account, was shown to be 0.62 €/kWh. The RAMseS payback period (PBP) without EV taken into account was calculated to be 9 years if the value of the produced energy becomes at least 0.35 €/kWh. Vehicles that use PV systems as their power source, such as RAMseS, will be economically effective for fuel costs higher than 1.8 €/L, but considering the environmental benefits that are provided in terms of external costs, they can be considered profitable even at lower fuel costs.  相似文献   
2.
Fragment projection following vessel burst is a possible cause of domino effects in industrial accidents. The projection of fragments from stationary equipment usually follows the catastrophic rupture of process equipment due to internal pressure exceeding design values. In recent years, a detailed model was developed to assess fragment impact probability. The model, based on the use of fragmentation patterns and of a simplified analysis of fragment trajectory, allows the calculation of impact probabilities considering different scenarios leading to vessel burst and fragment projection. In the present study a case-study was analyzed to assess model performance and to test the credibility of the model predictions for fragment number, shape and impact probability. The cumulative probability of fragment impact was found to be in good agreement with the actual distribution of the landing points experienced for the fragments formed in the accident. The maximum projection distance predicted by the model resulted comparable to the maximum landing distance experienced in the accident. The model tested thus seems to yield significant results, well in the range of those experienced in the case-study analyzed.  相似文献   
3.
In chemical industrial areas, technological accidents triggered by natural events (Natech events) may escalate. Complex cascading multi-hazard scenarios with high uncertainties may be caused. Resilience is an essential property of a system to withstand and recover from disruptive events. The present study focuses on the change of the resilience level due to (possible) interactions between cascading hazards, chemical installations and safety barriers during the dynamic evolution of fire escalations triggered by a natural hazard (certain cascading multi-hazard scenarios). A quantitative resilience assessment method is developed to this end. The state transition of a system facing accidents in the context of resilience is explored. Moreover, the uncertainties accompanying an accident evolution are quantified using a Dynamic Bayesian Network, allowing a detailed analysis of the system performance in different time steps. System resilience is measured as a time-dependent function with respect to the change of system performance. The applicability of the proposed methodology is demonstrated by a case study, and the effects of different configurations of safety barriers on improving resilience are discussed. The results are valuable to support disaster prevention within chemical industrial areas.  相似文献   
4.
Lightning strike is the natural event more frequency causing Natech accidents involving atmospheric storage tanks. Despite the resulting fires have usually limited severity and only local effects, domino effect may cause the escalation of these primary events, possibly affecting nearby pressurized storages and process equipment, thus resulting in relevant increase in the potential area impacted. A methodology was developed for the quantitative assessment of risk due to domino effects caused by Natech accidents triggered by lightning. A comprehensive procedure was obtained, tailoring lightning risk assessment to include probabilistic models for domino escalation based on probit approach and combinatorial analysis. The methodology was applied to a case-study to evidence the shift in risk figures due to domino effect and the credibility of the secondary domino scenarios. The results of the case-study show that an increase up to two orders of magnitude with respect to risk calculated for conventional scenarios is possible when considering lightning-induced Natech primary scenarios and their escalation.  相似文献   
5.
Escalation of primary accidental scenarios triggering a “domino effect” have caused extremely severe accidental events in the chemical and process industry. The identification of possible escalation events is required in the safety assessment of sites where relevant quantities of hazardous substances are stored or handled. In the European Union, “Seveso-II” Directive requires the assessment of on-site and off-site possible escalation scenarios in sites falling under the obligations of the Directive. In the present study, a methodology developed for the quantitative assessment of risk due to domino effect was applied to the analysis of an extended industrial area. Recently developed equipment damage probability models were applied for the identification of the final scenarios and for escalation probability assessment. The domino package of the Aripar-GIS software was used for risk recomposition. The results evidence that quantitative risk assessment of escalation hazard is of fundamental importance in order to identify critical equipment and to address prevention and protection actions.  相似文献   
6.
Chains of accidents, in literature generally referred to as domino effects, knock-on effects, cascade effects or escalation effects occur very infrequently but with disastrous consequences. There exist very few software packages to study such domino accidents in complex industrial areas and to forecast potential catastrophes caused by secondary order (involving a sequence of three installations submitted to two consecutive accidents), tertiary order or even higher order accidents. Moreover, available domino software focuses on risk assessment and on consequence assessment. None of these toolkits specifically addresses the prioritization of installation sequences in an industrial area in order to facilitate objective prevention decisions about domino effects. This paper describes the application of a new computer-automated tool designed to support decision-making on preventive and protective measures to alleviate domino effects in a complex surrounding of chemical installations. Using a holistic approach and thus looking at the entire industrial area as a whole, all sequences of three installations in the area are ranked according to their danger contribution to domino effects. An example of a cluster of chemical plants demonstrates the level of qualitative and quantitative input data required. The example is also used to explain the toolkit results, as well as the surplus value and the benefits for company safety managers and regulators.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号