首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
安全科学   4篇
  2021年   1篇
  2016年   3篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
After investigating gas dispersion on a cylindrical Floating Liquefied Natural Gas (FLNG) platform (Li et al, 2016), this second article focuses on assessment of gas explosion by using Computational Fluid Dynamics (CFD). Gas explosion simulations are carried out to evaluate the explosion overpressure mitigating effect of safety gap. The Data-dump technique, which is an effective tool in resetting turbulence length scale in gas explosion overpressure calculation, is applied to ensure simulation accuracy for the congestion scenario with safety gap. Two sets of different safety gaps are designed to investigate the safety gap on the cylindrical FLNG platform, the overall results indicate that the safety gap is effective in reducing overpressure in two adjacent congestions. However, for the explosion scenario where the flame is propagating through several safety gaps to the far field congestion, the safety gap mitigates overpressure only in certain explosion protecting targets. Two series of artificial configurations are modeled to further investigate the explosion scenarios with more than two safety gaps in one direction. It is concluded that the optimal safety gap design in overpressure mitigation for the cylindrical FLNG platform is to balance the safety gap distance ratio in the congested regions.  相似文献   
2.
The growing demand for natural gas has pushed oil and gas exploration to more isolated and previously untapped regions around the world where construction of LNG processing plants is not always a viable option. The development of FLNG will allow floating plants to be positioned in remote offshore areas and subsequently produce, liquefy, store and offload LNG in the one position. The offloading process from an FLNG platform to a gas tanker can be a high risk operation. It consists of LNG being transferred, in hostile environments, through loading arms or flexible cryogenic hoses into a carrier which then transports the LNG to onshore facilities. During the carrier's offloading process at onshore terminals, it again involves risk that may result in an accident such as collision, leakage and/or grounding. It is therefore critical to assess and monitor all risks associated with the offloading operation. This study is aimed at developing a novel methodology using Bayesian Network (BN) to conduct the dynamic safety analysis for the offloading process of an LNG carrier. It investigates different risk factors associated with LNG offloading procedures in order to predict the probability of undesirable accidents. Dynamic failure assessment using Bayesian theory can estimate the likelihood of the occurrence of an event. It can also estimate the failure probability of the safety system and thereby develop a dynamic failure assessment tool for the offloading process at a particular FLNG plant. The main objectives of this paper are: to understand the LNG offloading process, to identify hazardous events during offloading operation, and to perform failure analysis (modelling) of critical accidents and/or events. Most importantly, it is to evaluate and compare risks. A sensitivity analysis has been performed to validate the risk models and to study the behaviour of the most influential factors. The results have indicated that collision is the most probable accident to occur during the offloading process of an LNG carrier at berth, which may have catastrophic consequences.  相似文献   
3.
While the effect of the safety gap on explosions is well known, little has been carried out to evaluate the effect of the safety gap on dispersion of gas releases, this paper evaluates the effect of safety gap on gas dispersion for a cylindrical Floating Liquefied Natural Gas (FLNG) vessel. The realistic ship-shaped and circular FLNG platforms are established and used for the detailed CFD based analysis; rather than the structural and hydrodynamics advantages of mobility, stability and cost efficiency etc., this study aims to investigate the safety of gas dispersion on the cylindrical FLNG and compare the safety gap effects on different configurations. A series of different safety gap configurations are evaluated for gas dispersion occurring in near field for the traditional FLNG while both near field and far field gas dispersion simulations are conducted on the cylindrical one. The overall results indicate that the safety gap is effective in reducing the gas cloud size in both FLNG configurations, however, when it comes to the gas dispersion in the far field against the leakage point, the safety gap increases the gas cloud size in the cylindrical FLNG vessel on the contrary.  相似文献   
4.
The safety issues of Liquefied Natural Gas (LNG) in production, storage, loading/unloading, transportation/shipping, and re-gasification have became a major concern, since an accident in the LNG industry would be very costly. Understanding the threat of LNG not only contributes to the process safety and reliability in the research and development (R&D) system, but improves the efficiency of loss prevention, fire protection and emergency responses. As of April 2019, in order to obtain the present status and trend of LNG safety research, basing 1122 documents of the Web of Science database about safety research of LNG as a data source, CiteSpace and VOS viewer were used for network knowledge map analysis. A comprehensive knowledge map of LNG safety field was obtained from several research aspects including scientific research power, research hot spots and trends, research knowledge base and frontier. According to the study results, the development of LNG safety research was divided into four stages from 1970s to 2019, China and South Korea made a lot of contributions, and the United States is the most influential. Among them, the research from 2005 to 2019 was the most representative. Current research results indicate that a combination of Formal Safety Assessment (FSA) methodology and Dynamic Procedure for Atypical Scenarios Identification (DyPASI) will fully identify risks; The PHAST and TerEx programs quickly define safety zones. Computational Fluid Dynamics (CFD) software package can provide accurate quantitative data for the study of LNG safety. Research on quantitative risk assessment (QRA) and LNG evaporated gas (BOG) has been a hot topic and trend in this field. The application of expansion foam in LNG accident mitigation covers most of the research content in this field, and the optimization of LNG liquefaction process has a great influence on this industry. As the international demand for LNG energy output increases, floating liquefied natural gas (FLNG) will have considerable development, and increasingly researchers attach vital importance to the safety of LNG offshore production integrated unit.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号