首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   1篇
安全科学   87篇
环保管理   2篇
综合类   1篇
基础理论   1篇
社会与环境   1篇
  2023年   5篇
  2022年   2篇
  2021年   10篇
  2020年   9篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   11篇
  2014年   3篇
  2013年   8篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
International safety regulations such as EN 1127-1 consider ultrasound to be an ignition source. Currently, applications of ultrasound in explosive atmospheres have to comply with a threshold value of 1 mW/mm2. However, it is unclear as to how this intensity has to be measured and, therefore, this threshold value is poorly defined. Moreover, it is based on theoretical estimations in analogy to other ignition sources and there are no publications or significant records on these estimations. Within a research project at PTB, it has now been investigated experimentally in relation to worst-case considerations including airborne ultrasound, focused MHz ultrasound in liquids and acoustic cavitation. On the basis of the results of the research it is now possible to revise the current regulations and to specify measures for safe operation of ultrasonic applications in explosive atmospheres. In this context, for ultrasound coupled directly to gaseous atmospheres a new threshold value of 170 dB (re. 20 μPa) can be suggested, and for ultrasonic applications in liquids, an augmentation can be made to the threshold to 400 mW/mm2.  相似文献   
2.
Explosive gas mixtures and explosive dust clouds, once existing, exhibit similar ignition and combustion features. However, there are two basic differences between dusts and gases which are of substantially greater significance in design of safety standards than these similarities. Firstly, the physics of generation and up-keeping of dust clouds and premixed gas/vapour clouds are substantially different. This means that in most situations where accidental explosive gas clouds may be produced quite readily, generation of explosive dust clouds would be highly unlikely. Secondly, contrary to premixed gas flame propagation, the propagation of flames in dust/air mixtures is not limited only to the flammable dust concentration range of dynamic clouds. The state of stagnant layers/deposits offers an additional discrete possibility of flame propagation.

The two European Directives 94/9/EC (1994) and 1999/92/EC (1999) primarily address gases/vapours, whereas the particular properties of dusts are not addressed adequately. Some recent IEC and European dust standards resulting from this deficiency are discussed, and the need for revising the two directives accordingly is emphasized.  相似文献   

3.
Some results of determination of ignition energies for an aluminium powder with various oxide contents are presented. Common use of processes like high-speed cutting produce explosive dust clouds, so that we focused this study on hazard of metallic powders. An industrial aluminium powder has been used for this work. An original process, based on the principle of electrochemical anodisation, has been developed to increase, under control, the oxide coating of particles.

The sensitivity study to spark ignition was performed in an Hartmann explosion tube of 1.3L. The Langlie test method was applied to evaluate the energies leading to a probability of ignition of 50% (E50) of the selected samples. The results confirm that the ignition energies increase with the oxide content of the powder.  相似文献   

4.
The current research provides guidance on the prevention and mitigation of dust explosion using a Quantitative Risk Management Framework (QRMF). Using concepts drawn from previous studies, the framework consists of three main steps: (i) a new combined safety management protocol, (ii) the use of DESC (Dust Explosion Simulation Code) and FTA (Fault Tree Analysis) to assess explosion consequences and likelihood, respectively, and (iii) application of the hierarchy of controls (inherent, engineered and procedural safety). QRMF assessment of an industrial case study showed that the original process was at high risk. DESC simulations and Probit equations determined the destructive percentages. FTAs revealed high probabilities of explosion occurrence; in addition, detailed individual and societal risks calculations were made, before and after the framework was applied. Based on the hierarchy of controls technique, the framework showed significant risk reduction to the point where the residual risk was acceptable for the process.  相似文献   
5.
Many industrial processes are run at non-atmospheric conditions (elevated temperatures and pressures, other oxidizers than air). To judge whether and if yes to what extent explosive gas(vapor)/air mixtures will occur or may be generated during malfunction it is necessary to know the safety characteristic data at the respective conditions. Safety characteristic data like explosion limits, are depending on pressure, temperature and the oxidizer. Most of the determination methods are standardized for ambient conditions. In order to obtain determination methods for non-atmospheric conditions, particularly for higher initial pressures, reliable ignition criteria were investigated. Ignition tests at the explosion limits were carried out for mixtures of methane, propane, n-butane, n-hexane, hydrogen, ammonia and acetone in air at initial pressures up to 20 bar. The tests have been evaluated according to different ignition criteria: visual flame propagation, temperature and pressure rising. It could be shown that flame propagation and occasionally self-sustained combustion for several seconds occurred together with remarkable temperature rise, although the pressure rise was below 3%. The results showed that the combination of a pressure rise criterion of 2% and a temperature rise criterion of 100 K seems to be a suitable ignition criterion for the determination of explosion limits and limiting oxidizer concentration at higher initial pressures and elevated temperatures. The tests were carried out within the framework of a R&D project founded by the German Ministry of Economics and Technology.  相似文献   
6.
The critical temperature as well as the critical flux for ignition of a dust layer of cornflour and a mixture of wheatflour and cornflour (80% wheatflour+20% cornflour) on a hot plate have been determined. The moulded sample was cylindrical in shape and of different heights and diameters. The particle size of dusts ranged between 63 μm to 150 μm. The temperature–time histories for self-heating without ignition and with ignition are offered, showing the critical boundaries between them. Also the times to ignition for each dust, showing the effect of sample size on their values, are determined. Certain experimental correlations which relate to times to ignition, as well as the critical temperature for ignition and thermal and geometrical dimensions of sample are presented.  相似文献   
7.
冉难  蒋勇  邱榕  任星宇 《火灾科学》2015,24(3):119-128
通过对不同混合比率的乙醇/氢气/空气燃烧特性进行数值模拟,研究氢气添加量对点火延迟时间、层流燃烧速度、火焰厚度、化学反应滞留时间及组分分布情况的影响。研究发现一定程度上氢气添加量的增加能够缩短混合气体的点火延迟时间,并且氢气对点火延迟时间的影响随着温度的升高而逐渐减小。随着混合比率的增大,层流燃烧速度增大,并且在混合比率大于0.4时显著增大。火焰厚度及化学反应滞留时间随氢气增加而逐渐减小。此外,进一步分析组分分布情况得知氢气添加使火焰中H*、O*、OH*自由基摩尔分数峰值增大,并且H+O+OH摩尔分数峰值与层流燃烧速度存在线性关系。  相似文献   
8.
The authors investigated the ignitability of aluminium and magnesium dusts that are generated during the shredding of post-consumer waste. The relations between particle size and the minimum explosive concentration, the minimum ignition energy, the ignition temperature of the dust clouds, etc. the relation between of oxygen concentration and dust explosion, the effect of inert substances on dust explosion, etc. were studied experimentally.

The minimum explosive concentration increased exponentially with particle size. The minimum explosive concentrations of the sample dusts were about 170 g/m3 (aluminium: 0–8 μm) and 90 g/m3 (magnesium: 0–20 μm). The minimum ignition energy tended to increase with particle size. It was about 6 mJ for the aluminium samples and 4 mJ for the magnesium samples. The ignition temperature of dust clouds was about 750 °C for aluminium and about 520 °C for magnesium. The lowest concentrations of oxygen to produce a dust explosion were about 10% for aluminium and about 8% for magnesium. A large mixing ratio (more than about 50%) of calcium oxide or calcium carbonate was necessary to decrease the explosibility of magnesium dust. The experimental data obtained in the present investigation will be useful for evaluating the explosibility of aluminium and magnesium dusts generated in metal recycling operations and thus for enhancing the safety of recycling plants.  相似文献   

9.
Risk evaluation of mixtures of asphalt and inorganic salts such as sodium nitrate, sodium nitrite, sodium carbonate and sodium dihydrogenphosphate was conducted. The ignition and the combustion characteristics of mixtures of asphalt and oxidizing salts were obtained. Quasi-heat-accumulation experiments of asphalt–salt mixtures were conducted using about 1 kg samples. Six types of asphalt–salt mixtures were made and their ignition characteristics were examined in the quasi-heat-accumulation experiments. Then to clarify burning behavior of the asphalt–salt mixtures, experiments for understanding their combustion characteristics were conducted using a cone calorimeter.

The main results are as follows.

(1) In the quasi-heat-accumulation experiment, a region with high concentration of the salt mixture particles was made at the bottom of the sample vessel through the process of their sedimentation. An exothermic reaction started in this region. Just before the asphalt–salt mixture was ignited, a huge amount of white smoke was released. A kind of jet flame of a few meters in height was created.

(2) Based on the data of ignition temperature from the cone calorimeter experiments, ignition of asphalt was caused by a chemical reaction of asphalt with an oxidizing salt. The combustion of the asphalt–salt mixture contained the self-heating reaction.  相似文献   

10.
The objective of the study reported herein is to simulate various physical and chemical phenomena accompanying fuel-rich n-butane–oxygen mixture preparation, ignition, preflame oxidation, and combustion in the standard 20-l explosion vessel, by applying mathematical models. Based on the computational fluid dynamics (CFD) simulations of the mixing process and natural convection of the ignition kernel, as well as on the analysis of the detailed reaction mechanism of n-butane oxidation, laminar flame propagation, and self-ignition, possible explanations for the phenomena observed experimentally have been suggested. The results of the study indicate that seemingly inflammable mixtures can become hazardous depending on the mixture preparation procedure and forced ignition timing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号