首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   8篇
  国内免费   6篇
安全科学   11篇
废物处理   4篇
环保管理   2篇
综合类   22篇
基础理论   1篇
污染及防治   15篇
评价与监测   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2017年   5篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1990年   1篇
排序方式: 共有56条查询结果,搜索用时 171 毫秒
1.
Many regions of the world are predicted to experience water scarcity due to more frequent and more severe droughts and increased water demands. Water use efficiency by plants can be negatively affected by soil water repellency (SWR). It is timely to review existing techniques to remedy SWR. Ideally remediation addresses the origins of a problem. However, the fundamental mechanisms of how and why SWR develops are still poorly understood. In this review it was hypothesized that SWR occurs where the balance of input-decomposition of organic matter is impaired, due to either increased input or decreased decomposition rates of hydrophobic substances. Direct and indirect strategies to remedy SWR were distinguished. While direct remediation aims at abolishing the causes of SWR, indirect strategies seek to manage sites with SWR by treating its symptoms. The 12 reviewed strategies include applying surfactants, clay, slow-release fertilizers, lime, and fungicides, bioremediation of SWR through stimulating earthworms, choosing adapted vegetation, irrigation, cultivation, soil aeration and compaction. Some of the techniques have been applied successfully only in laboratory experiments. Our review highlights that it is not straightforward to cure SWR based on easily measurable and site-specific soil and vegetation properties, and that long-term, large-scale field experiments are required to improve the understanding of the evolution of SWR as cornerstone to develop cost-effective and efficient remediation strategies. We also identified current research gaps around the diagnosis and prevention of SWR.  相似文献   
2.
Abstract

An oil‐based formulation of carbaryl (1‐naphthyl N‐methyl‐carbamate) (Sevin‐2‐Oil) was applied twice by a fixed‐wing aircraft at a dosage rate of 280 g of A.I./ha/application to a coniferous forest near Allardville, New Brunswick. The highest concentrations of the chemical in fir foliage, litter and forest soil 1 h after application were respectively 4.20, 1.21 and 0.59 ppm (fresh weight). The residues dissipated rapidly and the DT50 values obtained from the depletion curves were 2.3 d for foliage and 1.5 d for litter and soil samples. Very low levels (<0.1 ppm) of carbaryl persisted in foliage and litter beyond the 10 d sampling period. The maximum residue level found in stream water was 0.314 ppm and more than 50% of it had dissipated within 1 h. Low but detectable levels (0.001 ppm) of the chemical persisted in water until the end of the 10 d sampling period. Sediment samples contained a maximum level of 0.04 ppm, which dissipated below the detection limit within 5 h. Brook trout and slimy sculpins captured in the stream 1 d after the spray contained on average about 0.04 ppm of carbaryl and none of it was found in 3 d postspray samples.  相似文献   
3.
Abstract

Dimilin® WP‐25, a wettable powder formulation of diflubenzuron (DFB) [1‐(4‐chlorophenyl)‐3‐(2,6‐difluorobenzoyl) urea], was formulated in four different carrier liquids, viz., water; a light petroleum paraffinic oil, ID 585; a heavy paraffinic oil, Sunspray® 7N; and a 1:2 mixture of a light petroleum aromatic solvent (Cyclosol® 63) and canola oil; to provide four end‐use mixtures, Dim‐W, Dim‐585, Dim‐7N and Dim‐Cy‐C respectively, each containing 28 g of DFB per litre. Balsam fir branch tips clipped from greenhouse‐grown seedlings, and sugar maple branch tips clipped from field‐grown young trees, were exposed to uniform‐sized droplets (ranging in diameters from 135 to 190 μm) of the four end‐use mixtures which were atomized using a monodispersed droplet generator. Droplets were collected on the fir and maple branch tips and the initial residue per g fresh weight of foliage was determined by high‐performance liquid chromatography (HPLC). The branch tips were exposed to cumulative rainfall of 3, 6 and 10 mm at an intensity of 5 mm/h and at time intervals of 1, 12, 36 and 72 h after DFB treatment, to test the influence of ‘ageing’ of foliar residues on rainfastness. Foliar samples were collected for residue determination just before the onset of rainfall, and at 0.5 h post‐rain. DFB was quantified by the HPLC method. In the case of fir foliage, the Dim‐W formulation was the most susceptible to rain‐washing and the rainfastness did not increase with the ageing period of foliar deposits. In contrast, the three oil‐based mixtures showed greater rainfastness depending upon the carrier liquid and the ageing period. Rainfastness decreased in the order of Dim‐Cy‐C > Dim‐7N > Dim‐585 > Dim‐W. In contrast, the data on maple foliage indicated that the ageing of deposits increased the rainfastness of all the 4 end‐use mixtures. Dim‐585 was the most susceptible to rain washing, and rainfastness decreased in the order of Dim‐W > Dim‐Cy‐C > Dim‐7N > Dim‐585.  相似文献   
4.
考虑离散油滴在油田废水除油过程中发生的油滴碰撞聚结现象,模拟得出斜板除油器内全部油滴的动态信息,用于斜板除油器除油效率的计算.对矩形同向流斜板除油过程的模拟研究表明:油滴的碰撞聚结会增加斜板除油的效率;当废水的原始含油浓度增大时,斜板除油的效率会增大,碰撞聚结对除油效率提高的影响也越大;废水流动速度提高及斜板的倾斜角度增加均会使斜板的除油效率降低,但此时油滴碰撞聚结对除油效率的影响仍很明显.  相似文献   
5.
为了减小常见下喷式装置风吹水损失大的问题,设计了上喷式矿井排风热回收装置.通过液滴受力及运动分析,将上喷式液滴的运动划分为2个阶段.根据牛顿第二定律,建立了简化的液滴动量方程;在该方程的基础上,结合运动阶段划分,得到临界条件下的力平衡关系式;利用该式,在10个不同相对速度下,得到了上喷式与下喷式的保证液滴不被吹飞的临界直径.应用变量替换,将液滴动量方程变换为液滴运动距离的微分式;继而,根据液滴及空气之间的雷诺数组合,导出了液滴最大上升高度的5个积分计算式.应用这些积分式,数值计算了不同迎面风速、液滴粒径及液滴初速度下,上喷式中液滴最大上升高度、下喷式中液滴最大下降高度.对比计算结果,相比下喷式,上喷式具有节水、液滴选择范围宽和低耗高效的优势.  相似文献   
6.
为提高煤矿喷雾除尘效率,揭示雾滴蒸发和存活时间的影响因素,基于差分方法,使用MATLAB软件编制雾滴蒸发过程仿真试验程序,研究了雾滴初始半径、雾滴与风流的初始相对速度、雾滴初始温度,以及巷道风流初始温度、湿度、风压共6个关键影响因素与存活时间的关系;采用逐步回归方法构造了包含5因素的雾滴存活时间计算方程。结果表明:在目前煤矿采用的雾化降尘工艺范围内,除雾滴初始温度外的其他5个因素对雾滴存活时间的影响均较为显著;构建的雾滴存活时间综合计算方程能合理计算雾滴的存活时间。  相似文献   
7.
TiO2薄膜光催化效果的强化   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备TiO2溶胶,将其涂覆在普通钠钙玻璃上,以TiO2对甲基橙的光分解率探讨TiO2薄膜最佳光催化性能.结果表明,当PEG400的加入量为7%时,TiO2薄膜的光催化性能最强;用锐钛型TiO2粉末二次引发的溶胶提拉制成的薄膜对甲基橙的光催化分解效果有很大的提高;经滴加操作后薄膜的光催化性能有明显改善;各个影响因素最好的组合效果为滴加操作 锐钛型粉体引发 H2SO4超强酸化 La3 掺杂.  相似文献   
8.
实验岩石学的研究表明,岩石中熔体的出现.可诱发断层作用,加强碎裂流动、位错蠕变和扩散蠕变作用。在给定的条件下,上述四种变形机制在部分熔融岩石中都会起作用,但只有那种能产生最快应变速率的机制占主导地位。而应变速率与岩石中熔体的百分数(体积)有关,因此,当熔体的百分数不同时,占主导地位的变形机制会有所不同。临界熔体百分数曾被当作反映部分熔融岩石流变学特征的一个重要参数,但近期的研究表明,临界熔体百分数受诸多因素的影响,或者说部分熔融岩石根本就不存在这样的植。熔体的出现极大地改变了岩石的流变学特征。  相似文献   
9.
The most important factor affecting efficacy and drift of pesticide applications is the droplet spectrum. To measure pesticide drift, researchers utilize fluorescent tracers to rapidly quantify spray deposition. Although fluorescent tracers have been used for more than 50 years, no experiments have been performed on the effect they have on the properties of pesticide formulations (density and viscosity) or droplet spectrum, which affect the drift of pesticides. Therefore, we examined the effect of an oil- and water-based tracer on the volume median diameter (VMD), viscosity, and density of oil- and water-based pesticide formulations. In addition, we experimentally fit and demonstrate the utility of using distributions to characterize pesticide droplet spectra. The addition of tracers to both water- and oil-based formulations did not significantly alter the VMD, viscosity, and density. Lognormal distributions provided the best fit for the water- and oil-based formulations with and without tracer. Our results demonstrated that the addition of oil- and water-based tracers do not significantly alter pesticide formulations properties and droplet spectrum, and most likely do not alter the movement of pesticide droplets in the environment.  相似文献   
10.
单液滴微萃取—气相色谱/质谱法检测水中多环芳烃   总被引:3,自引:0,他引:3  
采用单液滴微萃取-气相色谱/质谱(GC/MS)法建立了检测水中多环芳烃(PAHs)的方法,研究了萃取溶剂种类、萃取时间、搅拌速度对萃取效率的影响,确定了最佳单液滴微萃取条件,该法用于水中PAHs的检测,16种PAHs的线性范围为0.2~7.0μg/mL,相关系数≥0.9784,检出限为0.002~0.190μg/mL,相对标准偏差为7.1%~15.1%,加标回收率在81%~122%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号