首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
安全科学   6篇
环保管理   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2005年   1篇
  1975年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
Objective: Research has found that mandatory motorcycle helmet laws increase helmet use and reduce motorcycle-related fatalities. However, the association between state moped helmet laws and helmet use in the United States has not been examined. This study investigated this association among a census of fatally injured moped riders in the United States.

Methods: A logistic regression model was constructed to analyze data extracted from the Fatality Analysis Reporting System (FARS) to examine risk factors for helmet nonuse among 572 moped riders fatally injured between 2011 and 2015.

Results: Fatally injured moped riders in states with universal helmet laws had 69 times the odds of wearing a helmet (P < .001).

Conclusions: Findings suggest that universal moped helmet laws increase helmet use. However, additional research is needed to examine helmet laws and use among nonfatally injured moped riders.  相似文献   

3.
Objective: Vehicle safety rating systems aim firstly to inform consumers about safe vehicle choices and, secondly, to encourage vehicle manufacturers to aspire to safer levels of vehicle performance. Primary rating systems (that measure the ability of a vehicle to assist the driver in avoiding crashes) have not been developed for a variety of reasons, mainly associated with the difficult task of disassociating driver behavior and vehicle exposure characteristics from the estimation of crash involvement risk specific to a given vehicle. The aim of the current study was to explore different approaches to primary safety estimation, identifying which approaches (if any) may be most valid and most practical, given typical data that may be available for producing ratings.

Methods: Data analyzed consisted of crash data and motor vehicle registration data for the period 2003 to 2012: 21,643,864 observations (representing vehicle-years) and 135,578 crashed vehicles. Various logistic models were tested as a means to estimate primary safety: Conditional models (conditioning on the vehicle owner over all vehicles owned); full models not conditioned on the owner, with all available owner and vehicle data; reduced models with few variables; induced exposure models; and models that synthesised elements from the latter two models.

Results: It was found that excluding young drivers (aged 25 and under) from all primary safety estimates attenuated some high risks estimated for make/model combinations favored by young people. The conditional model had clear biases that made it unsuitable. Estimates from a reduced model based just on crash rates per year (but including an owner location variable) produced estimates that were generally similar to the full model, although there was more spread in the estimates. The best replication of the full model estimates was generated by a synthesis of the reduced model and an induced exposure model.

Conclusions: This study compared approaches to estimating primary safety that could mimic an analysis based on a very rich data set, using variables that are commonly available when registered fleet data are linked to crash data. This exploratory study has highlighted promising avenues for developing primary safety rating systems for vehicle makes and models.  相似文献   

4.
Objective: Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes.

Methods: We identified crash-involved vehicles, model year 2004–2013, in NASS-CDS (2003–2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater.

Results: We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1–4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1–4 stars).

Conclusions: Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.  相似文献   
5.
ABSTRACT: The dynamic relationship between stage and discharge which is unique to a particular flood for a selected station along the river can be determined via a mathematical model based on the complete one-dimensional equations of unsteady flow, i.e., the equations for the conservation of mass and momentum of the flood wave, and the Manning equation which accounts for energy losses. By assuming the bulk of the flood wave moves as a kinematic wave, the need for spatial resolution of the flood can be eliminated, and only the time variation of either the discharge or stage at the selected station is necessary for the computation of the other. The mathematical model can be used in river forecasting to convert the forecast discharge hydrograph into a stage hydrograph which properly reflects the unique dynamic stage-discharge relationship produced by the variable energy slope of the flood discharge. The model can be used also in stream gaging to convert a recorded stage hydrograph into a discharge hydrograph which properly accounts for the effects of unsteady flow. The model is applied to several observed floods at selected stations along the Lower Mississippi, Red, and Atchafalaya Rivers. The root mean square errors between observed and computed discharges are in the range of 3 to 7 percent, values well within the accuracy of the observations. A simple, easily-applied graphical procedure is also provided for estimating the magnitude of the effect of the unsteady flow on stage-discharge ratings. As a general rule, the dynamic effect may be significant if the channel bottom slope is less than 0.001 ft/ft (about 5 ft/mi) when the rate of change of stage is greater than about 0.10 ft/hr.  相似文献   
6.
Introduction: Side impact crash injuries tend to be severe, mainly due to the effects of the mechanism of such crashes. This study addresses the relationship between side impact crash injury severities and side impact safety ratings of the passenger cars involved in such crashes. It is motivated by the lack of research on side impact safety ratings in relation to the real-world crash outcomes. Method: Analysis of Crashworthiness Data System’s (CDS) data show the head and thorax are the most common regions of impact of severe injuries, while the neck is the least. Irrespective of body regions, higher-rated vehicles were found to provide better occupant protection to both younger and older driver age groups. Assessment based on injury severity score (ISS) indicates that higher-rated vehicles have an overall lower average ISS compared to lower-rated vehicles. Results: Ultimately, this study shows that vehicles rated with National Highway Traffic Safety Administration’s (NHTSA) new criteria had lower average ISS compared to vehicles rated under the old criteria. The 2011 NHTSA side impact rating criteria being relatively new, it has very few crashes to draw meaningful statistically significant conclusions. However, this paper establishes the fact that vehicles with higher star ratings (under experimental conditions) indeed offer increased occupant protection in the field conditions. Practical applications: Previous studies have found that safety was given priority while buying new vehicles. However, people associated vehicle safety with technologies and specific safety features rather than the vehicle’s crash test results or ratings (Koppel, Charlton, Fildes, & Fitzharris, 2008). The results from this study provide a point of reference for safety advocates to educate the drivers about the importance of considering vehicle safety ratings during a vehicle purchase.  相似文献   
7.
Given the common use of self‐ratings and other‐ratings (e.g., supervisor or coworker) of organizational citizenship behavior (OCB), the purpose of this meta‐analysis was to evaluate the extent to which these rating sources provide comparable information. The current study's results provided three important lines of evidence supporting the use and construct‐related validity of self‐rated OCB. The meta‐analysis of mean differences demonstrated that the mean difference in OCB ratings is actually quite small between self‐ and other‐raters. Importantly, the difference between self‐ and other‐raters was influenced by neither the response scale (i.e., agreement vs. frequency) nor the use of antithetical/reverse‐worded items on OCB scales. The meta‐analysis of correlations showed that self‐ and other‐ratings are moderately correlated but that self–other convergence is higher when antithetical items are not used and when agreement response scales are used. In addition, self‐ratings and supervisor‐ratings showed significantly more convergence than self‐ratings and coworker‐ratings. Finally, an evaluation of self‐rated and other‐rated OCB nomological networks showed that although self‐rated and other‐rated OCBs have similar patterns of relationships with common correlates, other‐rated OCB generally contributed negligible incremental variance to correlates and only contributed appreciable incremental variance to other‐rated behavioral variables (e.g., task performance and counterproductive work behavior). Implications and future research directions are discussed, particularly regarding the need to establish a nomological network for other‐rated OCB. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
Thornton, Christopher I., Anthony M. Meneghetti, Kent Collins, Steven R. Abt, and S. Michael Scurlock, 2011. Stage‐Discharge Relationships for U‐, A‐, and W‐Weirs in Un‐submerged Flow Conditions. Journal of the American Water Resources Association (JAWRA) 47(1):169‐178. DOI: 10.1111/j.1752‐1688.2010.00501.x Abstract: Instream rock weirs are routinely placed into stream systems to provide grade control, reduce streambank erosion, provide energy dissipation, and allow fish passage. However, design and performance criteria for site specific applications are often anecdotal or qualitative in nature, and based upon the experience of the design team. A study was conducted to develop generic state‐discharge relationships for U‐, A‐, and W‐weirs. A laboratory testing program was performed in which scaled, near‐prototype U‐, A‐, and W‐rock weir structures were constructed in 11 configurations. Each configuration encompassed a unique weir shape, bed material, and/or bed slope. Thirty‐one tests were conducted in which each structure was subjected to a sequence of predetermined discharges that minimally included the equivalent of 1/3 bankfull, 2/3 bankfull, and bankfull conditions. All tests were performed in subcritical, un‐submerged flow conditions. Stage‐discharge relationships were developed using multivariant, power regression techniques for each of the U‐, A‐, and W‐rock weirs as a function of the effective weir length, flow depth, mean weir height, rock size, and discharge coefficient. Unique coefficient expressions were developed for each weir shape, and a single discharge coefficient was proposed applicable to the weirs for determining the channel stage‐discharge rating.  相似文献   
9.
The Pathway to Sustainable Resource Management   总被引:1,自引:0,他引:1  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号